Skip to main content

Shape Decomposition and Shape Similarity Measure

  • Conference paper
Mustererkennung 1998

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

We propose a simple and natural rule for decomposition of 2D objects into parts of visual form. The hierarchical convexity rule states that visual parts axe enclosed by maximal convex boundary arcs (with respect to the object) at various levels of curve evolution. The proposed rule is based on a novel curve evolution method by digital linearization in which a significant visual part will become a convex part at some level of the evolution. The hierarchical convexity rule determines not only parts of boundary curves but directly the visual parts of objects, and the evolution hierarchy induces a hierarchical structure of the obtained visual parts.

Further, we derive a shape similarity measure based on the decomposition into visual parts and apply it to shape matching of object contours in an image database. The experimental results justify that our shape matching procedure is stable and robust with respect to noise deformations and gives an intuitive shape correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Beusmans, D. D. Hoffman, and B. M. Bennett. Description of solid shape and its inference from occluding contours. Journal of the Optical Society of America A. 4, 1155–1167, 1987.

    MathSciNet  Google Scholar 

  2. H. Freeman. Shape description via the use of critical points. Pattern Recognition 10, 159–166, 1978.

    Article  MATH  Google Scholar 

  3. I. Debled-Rennesson and J.-P. Reveilles. A Linear Algorithm for Segmentation of Digital Curves. Intl. J. Pattern Recognition and A19, 635–662, 1995.

    Google Scholar 

  4. D. D. Hoffman and W. A. Richards. Parts of Recognition. Cognition 18, 65–96, 1984.

    Article  Google Scholar 

  5. D. D. Hoffman and M. Singh. Salience of visual parts. Cognition 63, 29–78, 1997.

    Article  Google Scholar 

  6. B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations, I: The components of shape and the reaction-diffusion space. Int. J. of Computer Vision 15 (3), 189–224, 1995.

    Article  Google Scholar 

  7. R. Lakamper and F. Seytter. Manipulation objektbasiert codierter Bilder als Anwendungsbeipspiel neuer Videostandards. Proc. DAGM Mustererkennung, Braun-schweig, 427–434, Springer 1997.

    Google Scholar 

  8. L. J. Latecki and A. Rosenfeld. Supportedness and Supportedness: Differentialless Geometry of Plane Curves. Pattern Recognition 31, 607–622, 1998.

    Article  Google Scholar 

  9. L. J. Latecki and R. Lakämper. Discrete Approach to Curve Evolution. Proc. DAGM Mustererkennung, Stuttgart 1998.

    Google Scholar 

  10. L. J. Latecki and R. Lakamper. http://www.math.uni-hamburg.de/home/lakaemper/shape

    Google Scholar 

  11. E. J. Pauwels, P. Fiddelaers, and F. Mindru. Fully Unsupervised clustering using center-surround receptive fields with applications to colour-segmentation. Proc. of 7th Int. Conf. on Computer Analysis of Images and Patterns, Kiel, 17–24, 1997.

    Google Scholar 

  12. K. Siddiqi and B. B. Kimia. Parts of Visual Form: Computational Aspects. IEEE Trans. PAMI 17, 239–251, 1995.

    Article  Google Scholar 

  13. K. Siddiqi, K. Tresness, and B. B. Kimia. Parts of Visual Form: Ecological and Psychophysical Aspects. Proc. IAPR’s Int. Workshop on Visual Form, Capri, 1994.

    Google Scholar 

  14. N. Ueda and S. Suzuki. Learning Visual Models from Shape Contours Using Multi- scale Convex/Concave Structure Matching. IEEE Trans. PAMI 15, 337–352, 1993.

    Article  Google Scholar 

  15. Y. Uesaka. A New Fourier Description applicable to open curves. Trans, on IECE Japan A J67-A, 166–173, 1984 (in Japanese).

    Google Scholar 

  16. C. T. Zahn and R. Z. Roskies. Fourier Descriptors for Plane Closed Curves. IEEE Trans, on Computers 21, 269–281, 1972.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latecki, L.J., Lakämper, R. (1998). Shape Decomposition and Shape Similarity Measure. In: Levi, P., Schanz, M., Ahlers, RJ., May, F. (eds) Mustererkennung 1998. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72282-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72282-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64935-9

  • Online ISBN: 978-3-642-72282-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics