Skip to main content

Image Processing for Driver Assistance

  • Conference paper
Mustererkennung 1998

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Systems for automated image analysis are useful for a variety of tasks and their importance is still growing due to technological advances and an increase of social acceptance. Especially in the field of driver assistance systems the progress in science has reached a level of high performance. Fully or partly autonomously guided vehicles, particularly for road-based traffic, pose high demands on the development of reliable algorithms due to the conditions imposed by natural environments. At the Institut für Neuroinformatik methods for analyzing driving relevant scenes by computer vision are developed in cooperation with several partners from the automobile industry. We introduce a system which extracts the important information from an image taken by a CCD camera installed at the rear view mirror in a car. The approach consists of a sequential and a parallel sensor and information processing. Three main tasks namely the initial segmentation (object detection), the object tracking and the object classification are realized by integration in the sequential branch and by fusion in the parallel branch. The main gain of this approach is given by the integrative coupling of different algorithms providing partly redundant information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Bohrer, T. Zielke und V. Freiburg. An Integrated Obstacle Detection Framework for Intelligent Cruise Control on Motorways. In Proceedings of the Intelligent Vehicles Symposium, Detroit, Seite 276–281, 1995.

    Chapter  Google Scholar 

  2. M.E. Brauckmann, C. Goerick, J. Groß und T. Zielke. Towards all around automatic visual obstacle sensing for cars. In Proceedings of the Intelligent Vehicles ’94 Symposium, Paris, Prance, Seite 79–84, 1994.

    Chapter  Google Scholar 

  3. A. Broggi. A Massively Parallel Approach to Real-Time Vision-Based Road Markings Detection. In Proceedings of the Intelligent Vehicles ‘95 Symposium, Detroit, USA, Seite 84–85, 1995.

    Chapter  Google Scholar 

  4. E.D. Dickmanns et al. The Seeing Passenger Car’VaMoRs-P’. In Proceedings of the Intelligent Vehicles 7 94 Symposium, Paris, France, Seite 68–73, 1994.

    Google Scholar 

  5. ELTEC Elektronik GmbH, Mainz. THINEDGE-Processor for Contour Matching. Hardware Manual, Rev. 1A, 1991.

    Google Scholar 

  6. M. Finke und K.-R. Müller. Estimating A-Posteriori Probabilities Using Stochastic Network Models. In Proceedings of the Summer School on Neural Networks, Bolder, Colorado, Seite 276–281, 1993.

    Google Scholar 

  7. C. Goerick. Local orientation coding and adaptive thresholding for real time early vision. Internal Report IRINI 94–05, Institut für Neuroinformatik, Ruhr- Universität Bochum, D-44780 Bochum, Germany, Juni 1994.

    Google Scholar 

  8. C. Goerick, D. Noll und M. Werner. Artificial Neural Networks in Real Time Car Detection and Tracking Applications. Pattern Recognition Letters, 1996.

    Google Scholar 

  9. U. Handmann und T. Kalinke. Fusion of texture and contour based methods for object recognition. In ITSC’97, IEEE Conference on Intelligent Transportation Systems 1997, Boston, 1997. IEEE. Session 35: Intelligent Vehicles: Vision(3).

    Google Scholar 

  10. U. Handmann, T. Kalinke, C. Tzomakas, M. Werner und W. v. Seelen. Computer vision for driver assistance systems. In Proceedings of SPIE Vol. 3364 Orlando, 1998. SPIE. Session Enhanced and Synthetic Vision 1998.

    Google Scholar 

  11. U. Handmann, G. Lorenz, T. Schnitger und W. v. Seelen. Fusion of different sensors and algorithms for segmentation. In IV’98, IEEE International Conference on Intelligent Vehicles 1998, Stuttgart, 1998. IEEE.

    Google Scholar 

  12. U. Handmann, G. Lorenz und W. von Seelen. Fusion von Basisalgorithmen zur Segmentierung von Strassenverkehrsszenen. In Mustererkennung 1998, Heidelberg, 1998. Springer-Verlag.

    Google Scholar 

  13. Robert M. Haralick, K Shanmugan und Its’hak Dinstein. Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, 1973.

    Google Scholar 

  14. J.A. Hertz, A.S. Krogh und R.G. Palmer. Introduction to the Theory of Neural Computation. Addison Wesley, 1991.

    Google Scholar 

  15. K. Hornik, M. Stinchcombe und H. White. Multilayer Feedforward Networks are Universal Approximators. Neural Networks, 2: 359–366, 1989.

    Article  Google Scholar 

  16. D.P. Huttenlocher. Comparing Images Using the Hausdorff Distance. IEEE Transactions on PAMI, 15 (9), September 1993.

    Google Scholar 

  17. T. Kalinke und C. Tzomakas. Objekthypothesen in Verkehrsszenen unter Nutzung der Kamerageometrie. Internal Report IRINI 97–07, Institut für Neuroinformatik, Ruhr-Universität Bochum, D-44780 Bochum, Germany, 1997.

    Google Scholar 

  18. T. Kalinke und W. von Seelen. Entropie als Maß des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmersamkeitssteuerung. In Mustererkennung 1996, Seite 627–634, Heidelberg, 1996. Springer-Verlag.

    Google Scholar 

  19. T. Kalinke und W. von Seelen. Kullbach-Leibler Distanz als Maß zur Erkennung nicht rigider Objekte. In Mustererkennung 1997, Seite 501–508, Heidelberg, 1997. Springer-Verlag.

    Google Scholar 

  20. T. Kalinke und W. von Seelen. Kullback-Libler Distanz als Maß zur Erkennung nicht rigider Objekte. In Mustererkennung 1997, 1997.

    Google Scholar 

  21. H. Mori und N. M. Charkari. Shadow and Rhythm as Sign Patterns of Obstacle Detection. In International Symposium on Industrial Electronics, Seite 271–277, 1993.

    Google Scholar 

  22. D. Noll. Ein Optimierungsansatz zur Objekterkennung. Nummer 454 in Fortschrittberichte, Reihe 10. VDI-Verlag, Düsseldorf, 1996. Dissertation, Ruhr-Universität Bochum.

    Google Scholar 

  23. D.W. Paglieroni. Distance Transforms: Properties and Machine Vision Applications. CVGIP, 54 (l): 56–74, January 1991.

    Article  Google Scholar 

  24. D. Pomerleau. RALPH: Rapidly Adapting Lateral Position Handler. In Proceedings of the Intelligent Vehicles’95 Symposium, Detroit, USA, Seite 506–511, 1995.

    Google Scholar 

  25. T. Schnitger und U. Handmann. Fusion von Bildanalyseverfahren mittels einer neuronalen Kopplungsstruktur. Internal Report IRINI 98–01, Institut für Neuroinformatik, Ruhr-Universität Bochum, D-44780 Bochum, Germany, April 1998.

    Google Scholar 

  26. W. von Seelen et al. Image Processing of Dynamic Scenes. Internal Report IRINI 97–14, Institut für Neuroinformatik, Ruhr-Universität Bochum, D-44780 Bochum, Germany, Juli 1997.

    Google Scholar 

  27. M. Werner und W. v. Seelen. Using order statistics for object tracking. In Proceedings of the Intelligent Vehicles Symposium, Boston, Seite 323, Digest 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

v. Seelen, W., Handmann, U., Kalinke, T., Tzomakas, C., Werner, M. (1998). Image Processing for Driver Assistance. In: Levi, P., Schanz, M., Ahlers, RJ., May, F. (eds) Mustererkennung 1998. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72282-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72282-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64935-9

  • Online ISBN: 978-3-642-72282-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics