Skip to main content

Part of the book series: Advances in Anatomy Embryology and Cell Biology ((ADVSANAT,volume 148))

  • 48 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AD, Forrester JM (1968) The projection of the rat’s visual field on the cerebral cortex. Q J Exp Physiol 53: 327–336

    CAS  Google Scholar 

  • Adams CE, Mihailoff, Woodward DJ (1983) A transient component of the developing corticospinal tract arises in visual cortex. Neurosci Lett 36: 243–248

    PubMed  CAS  Google Scholar 

  • Alexandrova MA, Girman SV (1995) Correlations between the morphological and electrophysiological characteristics of neocortical transplants placed in the visual cortex of adult rats. Dokl Biol Sci 340: 83–86

    Google Scholar 

  • Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homebox gene expression, birthdates, and morphological features. J Comp Neurol 335: 237–95

    Google Scholar 

  • Arimatsu Y, Miyamoto M, Nihonmatsu I, Hirata K, Uratani Y, Hatanaka Y, Takiguchi-Hayashi K (1992) Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc Natl Acad Sci USA 89: 8879–8883

    PubMed  CAS  Google Scholar 

  • Arimatsu Y, Nihonmatsu I, Hirata K, Takiguchi-Hayashi K (1994) Cogeneration of neurons with a unique molecular phenotype in layers V and VI of widespread lateral neocortical areas in the rat. J Neurosci 14: 2020–2031

    PubMed  CAS  Google Scholar 

  • Barbe MF, Levitt P (1991) The early commitment of fetal neurons to the limbic cortex. J Neurosci 11: 519–533

    PubMed  CAS  Google Scholar 

  • Barbe MF, Levitt P (1992) Attraction of specific thalamic input by cerebral grafts depends on the molecular identity of the implant. Proc Natl Acad Sci USA 89: 3706–3710

    PubMed  CAS  Google Scholar 

  • Barbe MF, Levitt P (1995) Age-dependent specification of the corticocortical connections of cerebral grafts. J Neurosci 15: 1819–1834

    PubMed  CAS  Google Scholar 

  • Barth TM, Stanfield BB (1994) Homotopic, but not heterotopic, fetal cortical transplants can result in functional sparing following neonatal damage to the frontal cortex in rats. Cereb Cortex 4: 271–278

    PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107: 48–62

    PubMed  CAS  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development. Raven, New York

    Google Scholar 

  • Benzinger H, Massopust LC (1983) Brain stem projections from cortical area 18 in the albino rat. Exp Brain Res 50: 1–8

    PubMed  CAS  Google Scholar 

  • Bermudez-Rattoni F, Fernandez J, Sanchez MA, Aguilar-Roblero R, Drucker-Colin R (1987) Fetal brain transplants induce recuperation of taste aversion learning. Brain Res 416: 147–152

    PubMed  CAS  Google Scholar 

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99: 691–709

    PubMed  CAS  Google Scholar 

  • Björklund A, Stenevi U (1984) Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Annu Rev Neurosci 7: 279–308

    PubMed  Google Scholar 

  • Björklund A, Stenevi U (1985) Intracerebral neural grafting: a historical perspective. In: Björklund A, Stenevi U (eds) Neural grafting in the mammalian CNS. Elsevier, Amsterdam, pp 3–14

    Google Scholar 

  • Björklund A, Stenevi U, Schmidt RH, Dunnett SB, Gage FH (1983) Intracerebral grafting of neuronal cell suspensions. Acta Physiol Scand 522: 1–7

    Google Scholar 

  • Björklund A, Lindvall O, Isacson 0, Brundin P, Wictorin K, Strecker RE, Clarke DJ, Dunnett SB (1987) Mechanisms of action of intracerebral neural implants: studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 10: 509–516

    Google Scholar 

  • Bolz J, Götz M (1992) Mechanisms to establish specific thalamocortical connections in the developing brain. In: Sharma SC, Goffinet AM (eds) Development of the central neurons system in vertebrates. Plenum, New York, pp 179–192

    Google Scholar 

  • Bolz J, Novak N, Götz M, Bonhoeffer (1990) Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex. Nature 346: 359–362

    CAS  Google Scholar 

  • Bolz J, Novak N, Staiger V (1992) Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus. J Neurosci 12: 3045–3070

    Google Scholar 

  • Bolz J, Götz M, Hübener M, Novak N (1993) Reconstructing cortical connections in a dish. Trends Neurosci 16: 310–316

    PubMed  CAS  Google Scholar 

  • Bolz J, Kossel A, Bagnard D (1995) The specificity of interactions between the cortex and the thalamus. In: Bock GR, Cardew G (eds) Development of the cerebral cortex (Ciba Found Symp). Wiley, Chichester, pp 173–191

    Google Scholar 

  • Bradford R, Parnavelas JG, Lieberman AR (1978) Neurons in layer I of the developing occipital cortex of the rat. J Comp Neurol 176: 121–132

    Google Scholar 

  • Bragin, AG, Bohne A, Vinogradova OS (1988) Transplants of the embryonal rat somatosensory neocortex in the barrel field of the adult rat: responses of the grafted neurons to sensory stimulation. Neuroscience 25: 751–758

    PubMed  CAS  Google Scholar 

  • Bragin AG, Bohne A, Kitchigina VF, Vinogradova OS (1990) Functional integration of neurons in homotopic and heterotopic intra-cortical grafts with the host brain. Prog Brain Res 82: 287–300

    PubMed  CAS  Google Scholar 

  • Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Methods 45: 35–40

    PubMed  CAS  Google Scholar 

  • Burck HC (1973) Histologische Technik. Thieme, Stuttgart

    Google Scholar 

  • Burne RA, Parnavelas JG, Lin C-S (1984) Response properties of neurons in the visual cortex of the rat. Exp Brain Res 53: 374–383

    PubMed  CAS  Google Scholar 

  • Castro AJ (1972a) The effects of cortical ablations on digital usage in the rat. Brain Res 37: 173–185

    PubMed  CAS  Google Scholar 

  • Castro AJ (1972b) Motor performance in rats. The effects of pyramidal tract section. Brain Res 44: 313–323

    PubMed  CAS  Google Scholar 

  • Castro AJ, Zimmer J, Sunde NA, Bold EL (1985) Transplantation of fetal cortex to the brain of newborn rats: a retrograde fluorescent analysis of callosal and thalamic projections from transplant to host. Neurosci Lett 60: 283–288

    PubMed  CAS  Google Scholar 

  • Castro AJ, ‘fonder N, Sunde NA, Zimmer J (1987) Fetal cortical transplants in the cerebral hemisphere of newborn rats: a retrograde fluorescent analysis of connections. Exp Brain Res 66: 533–542

    CAS  Google Scholar 

  • Castro AJ, Dander N, Sunde NA, Zimmer J (1988) Fetal neocortical transplants grafted to the cerebral cortex of newborn rats receive afferents from the basal forebrain, locus coeruleus and midline raphe. Exp Brain Res 69: 613–622

    PubMed  CAS  Google Scholar 

  • Castro AJ, Sorensen JC, Dander N, Bold EL, Zimmer J (1989) Fetal neocortical transplants grafted into cortical lesion cavities made in newborn rats receive multiple host afferents. A retrograde fluorescent tracer analysis. Restor Neurol Neurosci 1: 13–23

    PubMed  CAS  Google Scholar 

  • Castro AJ, Hogan TP, Sorensen JC, Klausen BS, Danielsen EH, Zimmer J, Neafsey EJ (1991) Heterotopic neocortical transplants. An anatomical and electrophysiological analysis of host projections to occipital cortical grafts placed into sensorimotor cortical lesions made in newborn rats. Dev Brain Res 58: 231–236

    CAS  Google Scholar 

  • Catsicas M, Pequinot Y, Clarke PGH (1992) Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development. J Neurosci 12: 11145–11149

    Google Scholar 

  • Caviness VS (1982) Neocortical histogenesis in normal and reeler mice: a development study based on [3H] thymidine autoradiography. Dev Brain Res 4: 293–302

    Google Scholar 

  • Caviness VS, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1: 297–326

    PubMed  Google Scholar 

  • Caviness VS, Yorke CH (1976) Interhemispheric neocortical connection of the corpus callosum in the reeler mutant mouse: a study based on anterograde methods. J Comp Neurol 170: 449–460

    PubMed  Google Scholar 

  • Chang FLF, Steedman JG, Lund RD (1984) Embryonic cerebral cortex placed in the occipital region of newborn rats makes connections with the host brain. Dev Brain Res 13: 164–166

    Google Scholar 

  • Chang FLF, Steedman JG, Lund RD (1986) The lamination and connectivity of embryonic cerebral cortex transplanted into newborn rat cortex. J Comp Neurol 244: 401–411

    PubMed  CAS  Google Scholar 

  • Chino YM (1995) Adult plasticity in the visual system. Can J Physiol Pharmacol 73: 1323–1338

    PubMed  CAS  Google Scholar 

  • Cicirata F, Serapide MF, Nicotra G, Raffaele R (1992) Homotopic transplant of fetal cortex to lesioned motor cortex of adult rats. A comportmental and anatomical study. Arch Ital Biol 130: 101–111

    CAS  Google Scholar 

  • Clasca F, Angelucci A, Sur M (1995) Layer specific programs of development in neocortical projection neurons. Proc Natl Acad Sci USA 92: 11145–11149

    PubMed  CAS  Google Scholar 

  • Cohen-Tannoudji M, Babinet C, Wassef M (1994) Early determination of a mouse somatosensory cortex marker. Nature 368: 460–463

    PubMed  CAS  Google Scholar 

  • Coleman J, Clerici WJ (1980) Extrastriate projections from the thalamus to posterior occipital-temporal cortex. Brain Res 194: 205–209

    PubMed  CAS  Google Scholar 

  • Creel DJ, Dustman RE, Beck EC (1970) Differences in visually evoked responses in albino versus hooded rats. Exp Neurol 29: 298–309

    PubMed  CAS  Google Scholar 

  • Cunningham TJ, Huddelston C, Murray M (1979) Modification of neuron numbers in the visual system of the rat. J Comp Neurol 184: 423–434

    PubMed  CAS  Google Scholar 

  • Dean P (1990) Sensory cortex: visual perception functions. In: Kolb B, Tees RC (eds) The cerebral cortex of the rat. MIT, Cambridge, pp 275–307

    Google Scholar 

  • Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993). Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366: 464–466

    PubMed  CAS  Google Scholar 

  • Derer P, Derer M (1990) Cajal-Retzius cells ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 36: 839–856

    PubMed  CAS  Google Scholar 

  • Diao YC, Wang YK, Pu ML (1983) Binocular responses of cortical cells and the callosal projection in the albino rat. Exp Brain Res 49: 410–418

    PubMed  CAS  Google Scholar 

  • Divac I, Marinkovic S, Mogensen J, Schwerdtfeger W, Regidor J (1987) Vertical ascending connections in the isocortex. Anat Embryol 175: 443–455

    PubMed  CAS  Google Scholar 

  • Dräger UC (1981) Observations on the organization of the visual cortex in the reeler mouse. J Comp Neurol 201: 555–570

    PubMed  Google Scholar 

  • Dunn EH (1917) Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 27: 565–582

    Google Scholar 

  • Dunnett SB (1990a) Neural transplantation in animal models of dementia. Eur J Neurosci 2: 567–587

    PubMed  Google Scholar 

  • Dunnett SB (1990b) Is it possible to repair the damaged prefrontal cortex by neural tissue transplantation? Prog Brain Res 85: 285–297

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Björklund A (1987) Mechanisms of function of neural grafts in the adult mammalian brain. J Exp Biol 132: 265–289

    PubMed  CAS  Google Scholar 

  • Dunnett SB, Ryan CN, Levin PD, Reynolds M, Bunch ST (1987) Functional consequences of embryonic neocortex transplanted to rats with prefrontal cortex lesions. Behav Neurosci 101: 489–503

    PubMed  CAS  Google Scholar 

  • Ebrahimi-Gaillard A, Roger M (1996) Development of spinal cord projections from neocortical transplants heterotopically placed in the neocortex of newborn hosts is highly dependent on the embryonic locus of origin of the graft. J Comp Neurol 365: 129–140

    PubMed  CAS  Google Scholar 

  • Ebrahimi A, Pochet R, Roger M (1992) Topographical organization of the projections from physi- ologically identified areas of the motor cortex to the striatum in the rat. Neurosci Res 14: 39–60

    PubMed  CAS  Google Scholar 

  • Ebrahimi-Gaillard A, Guitet J, Gamier C, Roger M (1994) Topographic distribution of efferent fibers originating from homotopic or heterotopic transplants: heterotopically transplanted neurons retain some of the developmental characteristics corresponding to their site of origin. Dev Brain Res 77: 271–283

    CAS  Google Scholar 

  • Ebrahimi-Gaillard A, Beck T, Gaillard F, Wree A, Roger M (1995) Transplants of embryonic cortical tissue placed in the previously damaged frontal cortex of adult rats: local cerebral glucose utilization following execution of forelimb movements. Neuroscience 64: 49–60

    PubMed  CAS  Google Scholar 

  • Edmunds SM, Parnavelas JG (1982) Retzius-Cajal cells: an ultrastructural study in the developing cortex of the rat. J Neurocytol 11: 427–446

    PubMed  CAS  Google Scholar 

  • Ericson H, Blomqvist A (1988) Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies. J Neurosci Methods 24: 225–235

    PubMed  CAS  Google Scholar 

  • Escobar M, Fernandez J, Guevara-Aguilar R, Bermudez-Rattoni F (1989) Fetal brain grafts induce recovery of learning deficits and connectivity in rats with gustatory neocortex lesion. Brain Res 478: 368–374

    PubMed  CAS  Google Scholar 

  • Espinoza SG, Thomas HC (1983) Retinotopic organization of striate and extrastriate visual cortex in the hooded rat. Brain Res 272: 137–144

    PubMed  CAS  Google Scholar 

  • Fantie BD, Kolb B (1990) An examination of prefrontal lesion size and the effects of cortical grafts on performance of the Morris water task by rats. Psychobiology 18: 74–80

    Google Scholar 

  • Feldman SC, Peters A (1978) The forms of nonpyramidal neurons in the visual cortex of the rat. J Comp Neurol 179: 761–794

    PubMed  CAS  Google Scholar 

  • Fernandez-Ruiz J, Escobar ML, Pina AL, Diaz-Cintra S, Cintra-McGlone FL, Bermudez-Rattoni F (1991) Time-dependent recovery of taste aversion learning by fetal brain transplants in gustatory neocortex-lesioned rats. Behav Neural Biol 55: 179–193

    PubMed  CAS  Google Scholar 

  • Floeter MK, Jones EG (1984) Connections made by transplants to the cerebral cortex of rat brains in utero. J Neurosci 4: 141–150

    PubMed  CAS  Google Scholar 

  • Floeter MK, Jones EG (1985) Transplantation of fetal postmitotic neurons to rat cortex: survival, early pathway choices and long-term projections of outgrowing axons. Dev Brain Res 22: 19–38

    Google Scholar 

  • Fonseca M, DeFelipe J, Fairén A (1988) Local connections in transplanted and normal cerebral cortex of rats. Exp Brain Res 69: 387–398

    PubMed  CAS  Google Scholar 

  • Frantz GD, McConnell SK (1996) Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17: 55–61

    PubMed  CAS  Google Scholar 

  • Frantz GD, Weimann JM, Levin ME, McConnell SK (1994) Otxl and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci 14: 5725–5740

    PubMed  CAS  Google Scholar 

  • Frappé I, Roger M, Gaillard A (1996) Thalamic innervation of fetal frontal or occipital cortex transplanted into the occipital cortex of newborn rats. Eur J Neurosci Suppl 9: 47

    Google Scholar 

  • Frim DM, Uhler TA, Short MP, Ezzedine ZD, Klagsbrun M, Breakefield XO, Isacson O (1993) Effects of biologically delivered NGF, BDNF and bFGF on striatal excitotoxic lesions. Neuroreport 4: 367–370

    PubMed  CAS  Google Scholar 

  • Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O (1994) Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci USA 91: 5104–5108

    PubMed  CAS  Google Scholar 

  • Gaillard F, Girman SV (1997) Transplants occipitaux chez le rat adulte. Activité visuelle et distribution des afférences hôte-greffon. 3ème Colloque de la Société des Neurosciences, 25–28 May 1997, Bordeaux, France, F62 (abstract), p 191

    Google Scholar 

  • Gaillard F, Girman SV, Gaillard A (1997a) Afferents to visually responsive grafts of embryonic occipital neocortex tissue implanted into V I ( Ocl) cortical area of adult rat. Restor Neurol Neurosci (in the press)

    Google Scholar 

  • Gaillard A, Létang J, Frappé I, Roger M (1997b) Abnormalities in the development of the tectal projection from transplants of embryonic occipital cortex placed in the damaged occipital cortex of newborn rats. Exp Neurol 147: 476–486

    PubMed  CAS  Google Scholar 

  • Galuske RAW, Singer W (1996) The origin and topography of long-range intrinsic projections in cat visual cortex: a developmental study. Cereb Cortex 6: 417–430

    PubMed  CAS  Google Scholar 

  • Gardette R, Courtois M, Bisconte JC (1982) Prenatal development of mouse central nervous structures: time of neuron origin and gradient of neuronal production. A radioautographic study. J Hirnforsch 23: 415–431

    CAS  Google Scholar 

  • Gamier C, Arnault P, Ebrahimi-Gaillard A, Létang J, Roger M (1995) The topographic distribution of the efferents from neocortical neurons is not only dependent upon where in the neocortex the cells develop. A transplantation study within one single neocortical region. Dev Brain Res 89: 1–10

    Google Scholar 

  • Gamier C, Arnault P, Létang J, Roger M (1996) Development of projections from transplants of embryonic medial or lateral frontal cortex placed in the lateral frontal cortex of newborn hosts. Neurosci Lett 213: 33–36

    Google Scholar 

  • Gamier C, Arnault P, Roger M (1997) Development of the striatal projection from embryonic neurons from the lateral or medial frontal cortex grafted homo-or hetrotopically into the medial frontal cortex of newborn rats. Neurosci Lett 235: 41–44

    Google Scholar 

  • Gentile AM, Green S, Nieburgs A, Schmelzer W, Stein DG (1978) Disruption and recovery of locomotor and manipulatory behavior following cortical lesions in rats. Behav Biol 22: 417–455

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons, and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin. Brain Res 290: 219–238

    PubMed  CAS  Google Scholar 

  • Gibbs RB, Cotman CW (1987) Factor affecting survival and outgrowth from transplants of entorhinal cortex. Neuroscience 21: 699–706

    PubMed  CAS  Google Scholar 

  • Gibbs RB, Harris ÉW, Cotman CW (1985) Replacement of damaged cortical projections with transplants of entorhinal cortex. J Comp Neurol 26: 47–65

    Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron 9: 1–13

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphological and intracortical projections of functionally identified neurons in cat visual cortex. Nature 280: 120–125

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in visual cortex of the cat. J Neurosci 9: 2432–2442

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1992) Receptive field dynamics in adult primary visual cortex. Nature 356: 150–152

    PubMed  CAS  Google Scholar 

  • Girman SV (1994) Neocortical grafts receive functional afferents from the same neurons of the thalamus which have innervated the visual cortex replaced by the graft in adult rats. Neuroscience 60: 989–997

    PubMed  CAS  Google Scholar 

  • Girman SV, Gaillard F (1997) Physiological and anatomical study of embryonic cortical transplants replacing homotopically the primary visual (V1) cortical area in adult rats. XXXIII International Union of Physiological Sciences Congress, 30 June-July, 1997, St. Petersburg, Russia. Abstr: P094. 11

    Google Scholar 

  • Girman SV, Golovina IL (1990) Electrophysiological properties of embryonic neocortex transplants replacing the primary visual cortex of adult rats. Brain Res 523: 78–86

    PubMed  CAS  Google Scholar 

  • Gonzalez MF, Sharp FR (1987) Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats. I. NADPH-diaphorase neurons. J Neurosci 7: 2991–3001

    PubMed  CAS  Google Scholar 

  • Gonzalez MF, Poncelet A, Loken JE, Sharp FR (1986) Quantitative measurement of interresponse times to assess forelimb motor function in rats. Behav Brain Res 22: 75–84

    PubMed  CAS  Google Scholar 

  • Gonzalez MF, Sharp FR, Loken JE (1988) Fetal frontal cortex transplanted to injured motor/sensory cortex of adult rats: reciprocal connections with host thalamus demonstrated with WGA-HRP. Exp Neurol 99: 154–165

    PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1992) Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol 116: 105–121

    PubMed  CAS  Google Scholar 

  • Grabowski M, Brundin P, Johansson BB (1993) Functional integration of cortical grafts placed in brain infarcts of rats. Ann Neurol 34: 362–368

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wouterlood FG (1990) Light and electron microscopic tracing of neuronal connections with Phaseolus vulgaris leucoagglutinin (PHA-L) and combinations with other neuroanatomical techniques In: Björklund A, Hökfelt T, Wouterlood FG, VandenPol A (eds) Handbook of chemical neuroanatomy, vol 8. Analysis of neuronal microcircuits and synaptic interactions. Elsevier, Amsterdam, pp 47–124

    Google Scholar 

  • Gu Q, Liu Y, Cynader MS (1994) Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex. Proc Natl Acad Sci USA 91: 8408–8412

    PubMed  CAS  Google Scholar 

  • Guitet J, Gamier C, Ebrahimi-Gaillard A, Roger M (1994) Efferents of frontal or occipital cortex grafted into adult rat’s motor cortex. Neurosci Lett 180: 265–268

    PubMed  CAS  Google Scholar 

  • Harvey AR, Worthington DR (1990) The projection from different visual cortical areas to the rat superior colliculus. J Comp Neurol 298: 281–292

    PubMed  CAS  Google Scholar 

  • Horton HL, Levitt P (1988) A unique membrane protein is expressed on early developing limbic system axons and cortical targets. J Neurosci 8: 4653–4661

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1977) Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique. Nature 269: 328–330

    PubMed  CAS  Google Scholar 

  • Hughes HC (1977) Anatomical and neurobehavioral investigations concerning the thalamo-cortical organization of the rat’s visual system. J Comp Neurol 175: 311–336

    PubMed  CAS  Google Scholar 

  • Isacson O, Sofroniew MV (1992) Neuronal loss or replacement in the injured adult cerebral neocortex induces extensive remodeling of intrinsic and afferent neural system. Exp Neurol 117: 151–175

    PubMed  CAS  Google Scholar 

  • Isacson O, Wictorin K, Fischer W, Sofroniew MV, Björklund A (1988) Fetal cortical cell suspension grafts to the excitotoxically lesioned neocortex: anatomical and neurochemical studies of trophic interactions. Prog Brain Res 78: 13–26

    PubMed  CAS  Google Scholar 

  • Jensen KF, Killackey HP (1984) Subcortical projections from ectopic neocortical neurons. Proc Natl Acad Sci USA 81: 964–968

    PubMed  CAS  Google Scholar 

  • Joosten EE, Gribnau AAM, Dederen PJWC (1987) An anterograde tracer study of the developing corticospinal tract in the rat: three components. Dev Brain Res 36: 121–130

    Google Scholar 

  • Jourdan F, Duveau A, Astic L, Holley A (1980) Spatial distribution of 14C-2-deoxyglucose uptake in the olfactory bulbs of rats stimulated with two different odors. Brain Res 188: 139–154

    PubMed  CAS  Google Scholar 

  • Justice A, Moran TH, Deckel AW, Robinson RG (1989) The use of fetal neocortical transplants to treat the hyperactivity resulting from cortical suction lesions in adult rats. Behav Brain Res 33: 97–104

    PubMed  CAS  Google Scholar 

  • Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N (1990) Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248: 229–231

    PubMed  CAS  Google Scholar 

  • Kalil K, Schneider GE (1975) Motor performance following unilateral pyramidal tract sections in the hamster. Brain Res 100: 170–174

    PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for choline esterase. J Histochem Cytochem 12: 219–221

    PubMed  CAS  Google Scholar 

  • Kartje-Tillotson G, Castro AJ (1980) Limb preference after unilateral pyramidotomy in adult and neonatal rats. Physiol Behav 24: 293–296

    PubMed  CAS  Google Scholar 

  • Katz LC, Callaway EM (1992) Development of local circuits in mammalian visual cortex. Annu Rev Neurosci 15: 31–56

    PubMed  CAS  Google Scholar 

  • Kelche C, Dalrymple-Alford JC, Will B (1988) Housing conditions modulate the effects of intracerebral grafts in rats with brain lesions. Behav Brain Res 28: 287–295

    PubMed  CAS  Google Scholar 

  • Kelly PAT, Sharkey J, Ritchie IM (1992) Autoradiographic determination of glucose content and estimation of the lumped constant in intracerebral neuronal tissue transplants. Neuroscience 48: 417–422

    PubMed  CAS  Google Scholar 

  • Kennedy C, Des Rosiers MH, Sakurada O, Shinohara M, Reivich M, Jehle JW, Sokoloff L (1976) Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]-deoxyglucose technique. Proc Natl Acad Sci USA 73: 4230–4234

    PubMed  CAS  Google Scholar 

  • Kennedy H, Dehay C (1993) Cortical specification of mice and men. Cereb Cortex 3: 171–186

    PubMed  CAS  Google Scholar 

  • Kesslak JP, Brown L, Steichen C, Cotman CW (1986a) Adult and embryonic frontal cortex transplants after frontal cortex ablation enhance recovery on a reinforced alternation task. Exp Neurol 94: 615–626

    PubMed  CAS  Google Scholar 

  • Kesslak JP, Nieto-Sampedro M, Globus J, Cotman CW (1986b) Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation. Exp Neurol 92: 377–390

    PubMed  CAS  Google Scholar 

  • Kolb B, Fantie B (1994) Cortical graft function in adult and neonatal rats. In: Dunnett SB, Björklund A (eds) Functional neural transplantation. Raven, New York, pp 415–436

    Google Scholar 

  • Kolb B, Whishaw IQ (1983) Dissociation of the contributions of the prefrontal, motor, and parietal cortex to the control of movement in the rat: an experimental review. Can J Psycho! 37: 211–232

    CAS  Google Scholar 

  • Kolb B, Reynolds B, Fantie B (1988) Frontal cortex grafts have opposite effects at different postopera-tive recovery times. Behav Neural Biol 50: 193–206

    PubMed  CAS  Google Scholar 

  • Krieg WJS (1946a) Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J Comp Neurol 84: 221–242

    CAS  Google Scholar 

  • Krieg WJS (1946b) Connections of the cerebral cortex. I. The albino rat. B. Structure of the cortical areas. J Comp Neurol 84: 277–323

    CAS  Google Scholar 

  • Kuang RZ, Kalil K (1994) Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets. J Comp Neurol 344: 270–282

    PubMed  CAS  Google Scholar 

  • Kuang RZ, Merline M, Kalil K (1994) Topographic specificity of corticospinal connections formed in explant coculture. Development 120: 1937–1947

    PubMed  CAS  Google Scholar 

  • Labbe R, Firl A, Mufson EJ, Stein DG (1983) Fetal brain transplants: reduction of cognitive deficits in rats with frontal cortex lesions. Science 221: 470–472

    PubMed  CAS  Google Scholar 

  • Le Gros Clark WE (1940) Neuronal differentiation in implanted foetal cortical tissue. J Neurol Psychiatr 3: 263–272

    Google Scholar 

  • Lee SM, Ebner FF (1990) Response characteristics of neocortical graft neurons to host somatosensory input. Prog Brain Res 82: 301–308

    PubMed  CAS  Google Scholar 

  • Lemmon V, Pearlman AL (1981) Does laminar position determine the receptive field properties of cortical neurons? A study of corticotectal cells in area 17 of the normal mouse and the reeler mutant. J Neurosci 1: 83–98

    PubMed  CAS  Google Scholar 

  • Lent R (1982) The organization of the subcortical projections of the hamster’s visual cortex. J Comp Neurol 206: 227–242

    PubMed  CAS  Google Scholar 

  • Létang J, Gaillard A, Gamier C, Roger M (1997) Efferent connections of homotopic and heterotopic transplants of embryonic neocortical tissue placed in the occipital neocortex of newborn rats. Restor Neurol Neurosci 6: 1–13

    Google Scholar 

  • LeVay S, Sherk H (1981) The visual claustrum of the cat. I. Structure and connections. J Neurosci 1: 956–980

    PubMed  CAS  Google Scholar 

  • Levin BE, Dunn-Meynell A, Sved AF (1987) Functional integration of fetal cortical grafts into the afferent pathway of the rat somatosensory cortex ( SmI ). Brain Res Bull 19: 723–734

    Google Scholar 

  • Levitt P (1984) A monoclonal antibody to limbic system neurons. Science 223: 229–301

    Google Scholar 

  • Levitt P, Ferri RT, Eagleson KL (1993) Progressive acquisition of cortical phenotypes as a mechanism for specifying the developing cerebral cortex. Dev Neurobiol 1: 65–74

    CAS  Google Scholar 

  • Levitt P, Barbe MF, Eagleson KL (1997) Patterning and specification of the cerebral cortex. Annu Rev Neurosci 20: 1–24

    PubMed  CAS  Google Scholar 

  • Lindvall O (1991) Prospects of transplantation in human neurodegenerative diseases. Trends Neuro-sci 14: 376–384

    CAS  Google Scholar 

  • Lopez-Garcia JC, Fernandez-Ruiz J, Bermudez-Rattoni F, Tapia R (1990) Correlation between acetylcholine release and recovery of conditioned taste aversion induced by fetal neocortex grafts. Brain Res 523: 105–110

    PubMed  CAS  Google Scholar 

  • Lübke J, Wood MJA, Clarke DJ (1994) Morphological assessment of grafted rat and mouse cortical neurons: a light and electron microscopic study. J Comp Neurol 341: 78–94

    PubMed  Google Scholar 

  • Lund RD (1966) The occipitotectal pathway of the rat. J Anat 100: 51–62

    PubMed  CAS  Google Scholar 

  • Lund RD (1969) Synaptic patterns of the superficial layers of the superior colliculus of the rat. J Comp Neurol 135: 179–208

    PubMed  CAS  Google Scholar 

  • Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534: 209–224

    PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152: 109–126

    PubMed  CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215

    PubMed  CAS  Google Scholar 

  • Mattsson B, Sorensen JC, Zimmer J, Johansson BB (1997) Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28: 1225–1232

    PubMed  CAS  Google Scholar 

  • McConnell SK (1989) The determination of neuronal fate in the cerebral cortex. Trends Neurosci 12: 342–349

    PubMed  CAS  Google Scholar 

  • McConnell SK (1991) The generation of neuronal diversity in the central nervous system. Annu Rev Neurosci 14: 269–600

    PubMed  CAS  Google Scholar 

  • McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254: 282–285

    PubMed  CAS  Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projections from the cerebral cortex to the striatum in the rat. Neuroscience 29: 503–537

    PubMed  CAS  Google Scholar 

  • Meissirel C, Dehay C, Kennedy H (1993) Transient cortical pathways in the pyramidal tract of the neonatal ferret. J Comp Neurol 338: 193–216

    PubMed  CAS  Google Scholar 

  • Menetrey D (1985) Retrograde tracing of neural pathway with a protein-gold complex. I. Light microscopic detection after silver intensification. Histochemistry 83: 391–395

    PubMed  CAS  Google Scholar 

  • Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9: 235–241

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM (1984) Somatosensory cortical map changes following digital amputation in adult monkeys. J Comp Neurol 224: 591–605

    PubMed  CAS  Google Scholar 

  • Metin C, Godement P, Imbert M (1988) The primary visual cortex in the mouse: receptive field properties and functional organization. Exp Brain Res 69: 594–612

    PubMed  CAS  Google Scholar 

  • Miller B, Chou L, Finlay BL (1993) The early development of thalamocortical and corticothalamic projections. J Comp Neurol 335: 16–41

    PubMed  CAS  Google Scholar 

  • Miller MW (1987a) The origin of the corticospinal projection neurons in rat. Exp Brain Res 67: 339–351

    PubMed  CAS  Google Scholar 

  • Miller MW (1987b) Effect of prenatal exposure to alcohol on the distribution and time of origin of corticospinal neurons in the rat. J Comp Neurol 257: 372–387

    PubMed  CAS  Google Scholar 

  • Miller MW (1988) Development of projection and local circuit neurons in neocortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Development and maturation of cerebral cortex. Plenum, New York, pp 133–175

    Google Scholar 

  • Miller MW, Chiaia NL, Rhoades RW (1990) Intracellular recording and injection study of corticospinal neurons in the rat somatosensory cortex: effect of prenatal exposure to ethanol. J Comp Neurol 297: 91–105

    PubMed  CAS  Google Scholar 

  • Miyashita E, Keller A, Asanuma H (1994) Input-output organization of the rat vibrissal motor cortex. Exp Brain Res 99: 223–232

    PubMed  CAS  Google Scholar 

  • Molnar Z, Blakemore C (1991) Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351: 475–477

    PubMed  CAS  Google Scholar 

  • Montero VM (1973) Evoked responses in the rat’s visual cortex to contralateral, ipsilateral and restricted photic stimulation. Brain Res 53: 192–196

    PubMed  CAS  Google Scholar 

  • Montero VM (1981) Comparative studies on the visual cortex. In: Woosley N (ed) Cortical sensory organization, vol 2. Multiple visual areas. Humana, Clifton, pp 33–81

    Google Scholar 

  • Montero VM, Rojas A, Torrealba F (1973) Retinotopic organization of striate and peristriate visual cortex in the albino rat. Brain Res 53: 197–201

    PubMed  CAS  Google Scholar 

  • Mufson EJ, Labbe R, Stein DG (1987) Morphologic feature of embryonic neocortex grafts in adult rats following frontal cortical ablation. Brain Res 401: 162–167

    PubMed  CAS  Google Scholar 

  • Muller CM, Best J (1989) Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342: 427–430

    PubMed  CAS  Google Scholar 

  • Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res Rev 11: 77–96

    Google Scholar 

  • Neafsey EJ, Sorensen JC, Tonder N, Castro AJ (1989) Fetal cortical transplants into neonatal rats respond to thalamic and peripheral stimulation in the adult. An electrophysiological study of single-unit activity. Brain Res 493: 33–40

    Google Scholar 

  • Obukhova GP, Gogeliya KhK, Senatorov VV, Fulop Z (1992) Afferent and efferent connections of cortical transplants implanted into the damaged sensorimotor area of the cerebral cortex of adult rats. Neurosci Behav Physiol 22: 1–5

    PubMed  CAS  Google Scholar 

  • Olanow CW, Kordower JH, Freeman TB (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19: 102–109

    PubMed  CAS  Google Scholar 

  • Olavarria J (1979) A horseradish peroxidase study of the projections from the latero-posterior nucleus to three lateral peristriate areas in the rat. Brain Res 173: 137–141

    PubMed  CAS  Google Scholar 

  • Olavarria J, Van Sluyters RC (1982) The projection from striate and extrastriate cortical areas to the superior colliculus in the rat. Brain Res 242: 332–336

    PubMed  CAS  Google Scholar 

  • O’Leary DDM (1989) Do cortical areas emerge from a protocortex? Trends Neurosci 12: 400–406

    PubMed  Google Scholar 

  • O’Leary DDM, Stanfield BB (1986) A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination. Dev Brain Res 27: 87–99

    Google Scholar 

  • O’Leary DDM, Stanfield BB (1989) Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: experiments utilizing fetal cortical transplants. J Neurosci 9: 2230–2246

    PubMed  Google Scholar 

  • O’Leary DDM, Schlaggar BL, Tuttle R (1994) Specification of neocortical areas and thalamocortical connections. Annu Rev Neurosci 17: 419–439

    PubMed  Google Scholar 

  • O’Rourke NA, Chenn A, McConnell SK (1997) Posmitotic neurons migrate tangentially in the ventricular zone. Development 124: 997–1005

    PubMed  Google Scholar 

  • Ourednik W, Ourednik J (1994) Newly formed host cells in a grafted juvenile neocortex express neurone-specific marker proteins. Neuroreport 5: 1073–1076

    PubMed  CAS  Google Scholar 

  • Ourednik J, Ourednick W, van der Loos H (1993) Do foetal neural grafts induce repair by the injured juvenile neocortex? Neuroreport 5: 133–136

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, Edmunds SM (1983) Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in developing rat visual cortex. J Neurocytol 12: 863–871

    PubMed  CAS  Google Scholar 

  • Parnavelas JG, McDonald JK (1983) The cerebral cortex. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 505–549

    Google Scholar 

  • Paxinos G, Watson G (1986) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Payne BR, Cornwell P (1994) System-wide repercussions of damage to the immature visual cortex. Trends Neurosci 17: 126–130

    PubMed  CAS  Google Scholar 

  • Perry VH (1980) A tectocortical visual pathway in the rat. Neuroscience 5: 915–927

    PubMed  CAS  Google Scholar 

  • Plumet J, Cadusseau J, Roger M (1990) Fetal cortical transplants reduce motor deficits resulting from neonatal damage to the rat’s frontal cortex. Neurosci Lett 109: 102–106

    PubMed  CAS  Google Scholar 

  • Plumet J, Cadusseau J, Roger M (1991) Skilled forelimb use in the rat: amelioration of functional deficits resulting from neonatal damage to the frontal cortex by neonatal transplantation of fetal cortical tissue. Restor Neurol Neurosci 3: 135–147

    PubMed  CAS  Google Scholar 

  • Plumet J, Ebrahimi A, Guitet J, Roger M (1993) Partial recovery of skilled forelimb reaching after transplantation of fetal cortical tissue in adult rats with motor cortex lesion. Anatomical and functional aspects. Restor Neurol Neurosci 6: 9–27

    Google Scholar 

  • Price AW, Fowler SC (1981) Deficits in contralateral and ipsilateral forepaw motor control following unilateral motor cortical ablations in rats. Brain Res 205: 81–90

    PubMed  CAS  Google Scholar 

  • Price DJ, Lotto RB (1996) Influences of the thalamus on the survival of subplate and cortical plate cells in cultured embryonic mouse brain. J Neurosci 16: 3247–3255

    PubMed  CAS  Google Scholar 

  • Raabe JI, Windrem MS, Finlay BL (1986) Control of cell number in the developing visual system. II. Visual cortex ablation. Dev Brain Res 28: 11–22

    Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170–176

    PubMed  CAS  Google Scholar 

  • Rakic P (1995a) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18: 383–388

    PubMed  CAS  Google Scholar 

  • Rakic P (1995b) Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc Natl Acad Sci USA 92: 11323–11327

    PubMed  CAS  Google Scholar 

  • Ranson SW (1909) On the medullated nerve fibers crossing the site of lesions in the brain of the white rat. J Comp Neurol 13: 185–207

    Google Scholar 

  • Reznikov KY, Fulop Z, Hajos F (1984) Mosaicism of the ventricular layer as the developmental basis of neocortical columnar organization. Anat Embryol 170: 99–105

    PubMed  CAS  Google Scholar 

  • Roger M, Ebrahimi-Gaillard A (1994) Anatomical and functional characteristics of fetal neocortex transplanted into the neocortex of newborn or adult rats. Rev Neurosci 5: 11–26

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Liang F, Moret V, Wiesendanger M (1991) Patterns of corticothalamic terminations following injection of Phaseolus vulgaris leucoagglutinin ( PHA-L) in the sensorimotor cortex of the rat. Neurosci Lett 125: 93–97

    Google Scholar 

  • Russell MJ, Vijayan VK, Gibbs RB, Geddes JW, Jacobson CH, Cotman CW (1990) Long-term survival of neural transplants to senescence in rats. Exp Neurol 108: 105–108

    PubMed  CAS  Google Scholar 

  • Ryan AF, Sharp FR (1982) Localization of [3H]2-deoxyglucose at the cellular level using freeze-dried tissue and dry-looped emulsion. Brain Res 252: 177–180

    PubMed  CAS  Google Scholar 

  • Salin P-A, Bullier J (1995) Corticocortical connections in the visual system: structure and function. Physiol Rev 75: 107–154

    PubMed  CAS  Google Scholar 

  • Sanderson KJ, Dreher B, Gayer N (1991) Prosencephalic connections of striate and extrastriate areas of rat visual cortex. Exp Brain Res 85: 324–334

    PubMed  CAS  Google Scholar 

  • Savaki HE, Davidsen L, Smith C, Sokoloff L (1980) Measurement of free glucose turnover in the rat brain. J Neurochem 35: 495–502

    PubMed  CAS  Google Scholar 

  • Schlaggar BL, O’Leary DDM (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252: 1556–1560

    PubMed  CAS  Google Scholar 

  • Schneider GE (1970) Mechanisms of functional recovery following lesions of the visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav Evol 3: 295–323

    PubMed  CAS  Google Scholar 

  • Schreyer DG, Jones EG (1988) Topographic sequence of outgrowth of corticospinal axons in the rat: a study using retrograde labeling with fast blue. Dev Brain Res 38: 89–101

    Google Scholar 

  • Schulz MK, Hogan TP, Castro AJ (1993) Connectivity of fetal neocortical block transplants in the excitotoxically ablated cortex of adult rats. Exp Brain Res 96: 480–486

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205: 723–725

    PubMed  CAS  Google Scholar 

  • Sefton AJ, Dreher B (1985) Visual system. In: Paxinos G (ed) The rat nervous sytem, vol I. Forebrain and midbrain. Academic, Sydney, pp 169–221

    Google Scholar 

  • Sefton AJ, Mackay-Sim A, Baur LA, Cottee LJ (1981) Cortical projections to visual centres in the rat: An HRP study. Brain Res 215: 1–13

    Google Scholar 

  • Senatorov VV, Nyakas C, Fulop Z (1993) Visualization of outgrowing axons of grafted neurons by anterograde labelling with Phaseolus vulgaris leucoagglutinin in the motor cortex of the rat. Restor Neurol Neurosci 5: 337–345

    PubMed  CAS  Google Scholar 

  • Sharkey MA, Lund RD, Dom RM (1986) Maintenance of transient occipitospinal axons in the rat. Dev Brain Res 30: 257–261

    Google Scholar 

  • Sharp FR, Gonzalez MF (1984) Fetal frontal cortex transplant [14C] 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex. Neurology 34: 1305–1311

    PubMed  CAS  Google Scholar 

  • Sharp FR, Gonzalez MF (1986) Fetal cortical transplants ameliorate thalamic atrophy ipsilateral to neonatal frontal cortex lesions. Neurosci Lett 71: 247–251

    PubMed  CAS  Google Scholar 

  • Sharp FR, Kilduff TS, Bzorgchami S, Heller HC, Ryan AF (1983) The relationship of local cerebral glucose utilization to optical ratios. Brain Res 263: 97–103

    PubMed  CAS  Google Scholar 

  • Sharp FR, Gonzalez MF, Ferriero DM, Sagar SM (1986) Injured adult neocortical neurons sprout fibers into surviving fetal frontal cortex transplants: evidence using NADPH-diaphorase staining. Neuro-sci Lett 65: 204–208

    CAS  Google Scholar 

  • Shaw C, Yinon U, Auerbach E (1975) Receptive fields and response properties of neurons in the rat visual cortex. Vision Res 15: 203–208

    PubMed  CAS  Google Scholar 

  • Sherk H, LeVay S (1981) The visual claustrum of the cat. III. Receptive field properties. J Neurosci 1: 993–1002

    PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992a) Nested expression domains of four homeobox genes in the developing rostral brain. Nature 358: 687–690

    PubMed  CAS  Google Scholar 

  • Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M, Boncinelli E (1992b) Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. EMBO J 11: 2541–2550

    PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12: 2735–2747

    PubMed  CAS  Google Scholar 

  • Slavin MD, Held JM, Basso DM, Lesensky S, Curran C, Gentile AM, Stein DG (1988) Fetal brain tissue transplants and recovery of locomotion following damage to sensorimotor cortex in rats. Prog Brain Res 78: 33–38

    PubMed  CAS  Google Scholar 

  • Slonievski P, Pilgrim C (1984) Claustro-neocortical connections in the rat as demonstrated by retrograde tracing with lucifer yellow. Neurosci Lett 49: 29–32

    Google Scholar 

  • Smart IHM (1983) Three dimensional growth of the mouse isocortex. J Anat 137: 683–694

    PubMed  Google Scholar 

  • Smart IHM, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134: 415–442

    Google Scholar 

  • So KF, Jen LS (1982) Visual callosal, corticotectal and corticogeniculate projections in golden hamsters. Brain Behav Evol 21: 125–136

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Dunnett SB, Isacson O (1990) Remodelling of intrinsic and afferent systems in neocortex with cortical transplants. Prog Brain Res 82: 313–319

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C-deoxyglucose method for measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    PubMed  CAS  Google Scholar 

  • Sorensen JC, Zimmer J, Castro AJ (1989) Fetal cortical transplants reduce the thalamic atrophy induced by frontal cortical lesions in newborn rats. Neurosci Lett 98: 33–38

    PubMed  CAS  Google Scholar 

  • Sorensen JC, Wanner-Olsen H, Tonder N, Danielsen E, Castro AI, Zimmer J (1990) Axotomized, adult basal forebrain neurons can innervate fetal frontal cortex grafts: a double fluorescent tracer study in the rat. Exp Brain Res 81: 545–551

    PubMed  CAS  Google Scholar 

  • Sorensen JC, Castro AI, Klausen B, Zimmer J (1992) Projections from fetal neocortical transplants placed in the frontal neocortex of newborn rats. A Phaseolus vulgaris-leucoagglutinin tracing study. Exp Brain Res 92: 299–309

    Google Scholar 

  • Soriano E, Dumesnil N, Auladell C, Cohen-Tannoudji M, Sotelo C (1995) Molecular heterogeneity of progenitors and radial migration in the developing cerebral cortex revealed by transgene expression. Proc Natl Acad Sci USA 92: 11676–11680

    PubMed  CAS  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM (1986) Growth and differentiation of cerebral suspensions transplanted into the adult cerebellum of mice with heterodegenerative ataxia. Proc Natl Acad Sci USA 83: 1135–1139

    PubMed  CAS  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM (1991) The reconstruction of cerebral circuits. Trends Neurosci 14: 350–357

    PubMed  CAS  Google Scholar 

  • Stanfield BB, O’Leary DDM (1985a) Fetal occipital cortical neurones transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature 313: 135–137

    PubMed  CAS  Google Scholar 

  • Stanfield BB, O’Leary DDM (1985b) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238: 236–248

    PubMed  CAS  Google Scholar 

  • Stein DG (1987) Transplant-induced functional recovery without specific neuronal connections. Progr Res Am Paralysis Assoc 18: 4–5

    Google Scholar 

  • Stein DG, Mufson EJ (1987) Morphological and behavioral characteristics of embryonic brain tissue transplants in adult, brain-damaged subjects. Ann NY Acad Sci 495: 444 463

    Google Scholar 

  • Stein DG, Labbe R, Attella MJ, Rakowsky HA (1985) Fetal brain tissue transplants reduce visual deficits in adult rats with bilateral lesions of the occipital cortex. Behav Neural Biol 44: 266–277

    PubMed  CAS  Google Scholar 

  • Stein DG, Palatucci C, Kahn D, Labbe R (1988) Temporal factors influence recovery of function after embryonic brain tissue transplants in adult rats with frontal cortex lesions. Behav Neurosci 102: 260–267

    PubMed  CAS  Google Scholar 

  • Stewart WB, Kauer JS, Sheperd GM (1979) Functional organization of rat olfactory bulb analyzed by the 2-deoxyglucose method. J Comp Neurol 185: 715–734

    PubMed  CAS  Google Scholar 

  • Stroemer RP, Kent TA, Hulsebosch CE (1995) Neocortical neural sprouting, synaptogenesis and behavioral recovery after neocortical infarction in rats. Stroke 26: 2135–2144

    PubMed  CAS  Google Scholar 

  • Swadlow HA (1983) Efferent systems of primary visual cortex: a review of structure and function. Brain Res Rev 6: 1–24

    Google Scholar 

  • Takahashi T (1985) The organization of the lateral thalamus of the hooded rat. J Comp Neurol 231: 281–309

    PubMed  CAS  Google Scholar 

  • Tan SS, Breen S (1993) Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362: 638–640

    PubMed  CAS  Google Scholar 

  • Thompson WG (1890) Successful brain grafting. NY Med J 51: 701–702

    Google Scholar 

  • Thong IG, Dreher B (1986) The development of the corticotectal pathway in the albino rat. Dev Brain Res 25: 227–238

    Google Scholar 

  • Valverde F, Facal-Valverde MV, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J Comp Neurol 290: 118–140

    PubMed  CAS  Google Scholar 

  • Valverde F, Lopez-Mascaraque L, Santacana M, De Carlos JA (1995) Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during early postnatal period. J Neurosci 15: 5014–5024

    PubMed  CAS  Google Scholar 

  • Vanderwolf CH (1990) An introduction to the electrical activity of the cerebral cortex: relations to behavior and control by subcortical inputs. In: Kolb B, Tees RC (eds) The cerebral cortex of the rat. MIT, Cambridge, pp 151–189

    Google Scholar 

  • Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies. J Neurosci Methods 41: 239–254

    PubMed  CAS  Google Scholar 

  • Vereshchak NI, Lenkov DN (1990) The recovery of locomotion following partial extirpation of the motor cortex and transplantation of cortical tissue in the white rat. Neurosci Behav Physiol 20: 371–377

    PubMed  CAS  Google Scholar 

  • Vogt BA, Miller MW (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216: 192–210

    PubMed  CAS  Google Scholar 

  • Wagor E, Mangini NJ, Pearlman AL (1980) Retinopathic organization of striate and extrastriate visual cortex of the mouse. J Comp Neurol 193: 187–202

    PubMed  CAS  Google Scholar 

  • Wallace RB, Das GD (1982) Behavioral effects of CNS transplants in the rat. Brain Res 243: 133–139

    PubMed  CAS  Google Scholar 

  • Walsh C, Cepko CL (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255: 437–440

    Google Scholar 

  • Walsh C, Cepko CL (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362: 632–635

    PubMed  CAS  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113: 1435–1449

    PubMed  CAS  Google Scholar 

  • Welicky M, Katz LC (1994) Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modelling. J Neurosci 14: 7291–7305

    Google Scholar 

  • Whishaw IQ, Kolb B (1988) Sparing of skilled forelimb reaching and corticospinal projections after neonatal motor cortex removal or hemidecortication in the rats: support for the Kennard doctrine. Brain Res 451: 97–114

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, O’Connor WT, Dunnett SB (1986) The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 109: 805–843

    PubMed  Google Scholar 

  • Whishaw IQ, Pellis SM, Gorny BP, Pellis VC (1991) The impairments in reaching and the movements of compensation in rats with motor cortex lesions: an endpoint, videorecording, and movement notation analysis. Behav Brain Res 42: 77–91

    PubMed  CAS  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1982) The corticopontine system in the rat. II. The projection pattern. J Comp Neurol 208: 227–238

    Google Scholar 

  • Wiesenfeld Z, Kornel EE (1975) Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res 94: 401–412

    PubMed  CAS  Google Scholar 

  • Woo TU, Beale JM, Finlay BL (1991) Dual fate of subplate neurons in the rodent. Cereb Cortex 1: 173–200

    Google Scholar 

  • Wood JG, Martin S, Price DJ (1992) Evidence that the earliest generated cells of the murine cerebral cortex form a transient population in the subplate and marginal zone. Dev Brain Res 66: 137–140

    CAS  Google Scholar 

  • Woodruff ML, Baidsen RH, Nonneman AJ (1990) Transplantation of fetal hippocampus may prevent or produce behavioral recovery from hippocampal ablation and recovery persists after removal of the transplant. Prog Brain Res 82: 367–376

    PubMed  CAS  Google Scholar 

  • Wouterlood FG, Jorritsma-Byham B (1993) The anterograde neuroanatomical tracer biotinylated dextran amine: comparison with the tracer PHA-L in preparation for electron microscopy. J Neurosci Methods 48: 75–87

    PubMed  CAS  Google Scholar 

  • Wree A, Zilles K, Schleicher A, Horvath E, Traber J (1987) Effect of the 5-HT1A receptor agonist ipsaspirone on the local cerebral glucose utilization of the rat hippocampus. Brain Res 436: 283–290

    PubMed  CAS  Google Scholar 

  • Wree A, Schleicher A, Zilles K, Beck T (1988) Local cerebral glucose utilization in the Ammon’s horn and dentate gyrus of the rat brain. Histochemistry 88: 415–426

    PubMed  CAS  Google Scholar 

  • Wree A, Zilles K, Schleicher A (1990) Local cerebral glucose utilization in the neocortical areas of the rat. Anat Embryol 181: 603–614

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Kurotani T, Toyama K (1989) Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science 245: 192–194

    PubMed  CAS  Google Scholar 

  • Yirmiya R, Zhou FC, Holder MD, Deems DA, Garcia J (1988) Partial recovery of gustatory function after neural tissue transplantation to the lesioned gustatory neocortex. Brain Res Bull 20: 619–625

    PubMed  CAS  Google Scholar 

  • Zhou F-M, Hablitz JJ (1996) Morphological properties of intracellularly labeled layer I neurons in rat neocortex. J Comp Neurol 376: 198–213

    PubMed  CAS  Google Scholar 

  • Zilles K (1985) The cortex of the rat: a stereotaxic atlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zilles K (1990) Anatomy of the neocortex: cytoarchitecture and myeloarchitecture. In: Kolb B, Tees RC (eds) The cerebral cortex of the rat. MIT, Cambridge, pp 76–112

    Google Scholar 

  • Zilles K, Wree A (1985) Cortex: areal and laminar structure. In: Paxinos G (ed) The rat nervous system, vol 1. Forebrain and midbrain. Academic, Sydney, pp 375–415

    Google Scholar 

  • Zilles K, Schleicher A, Rath M, Glaser T, Traber J (1986) Quantitative autoradiography of transmitter binding sites with an image analyzer. J Neurosci Methods 18: 207–220

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaillard, A., Gaillard, F., Roger, M. (1998). References. In: Neocortical Grafting to Newborn and Adult Rats: Developmental, Anatomical and Functional Aspects. Advances in Anatomy Embryology and Cell Biology, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72179-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72179-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64252-7

  • Online ISBN: 978-3-642-72179-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics