Skip to main content

Theory and Practice of Using Polycationic Amphiphiles and polymers for In Vitro and In Vivo Gene Transfer

  • Conference paper
Gene Therapy

Part of the book series: NATO ASI Series ((ASIH,volume 105))

Abstract

The mechanisms underlying the actions of polycationic (as opposed to monocationic) gene transfer vectors is described. Two main types of vectors are examined, polycationic amphiphiles such as DOGS (Transfectam™) and Lipofectamine on the one hand and cationic polymers such as polyethyleneimine on the other hand. The gene transfer performances of these molecules is a function of their DNA condensing capacity, their interactions with anionic proteoglycans of the cell membrane and their capactiy to induce endosome swelling and rupture. The importance of taking into account the overall charge ratio of complexes when carrying out in vitro or in vivogene transfer is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Labat-Moleur F, Steffan AM, Brisson C, Perron H, Feugeas O, Furstenberger P, Oberling F, Brambilla E, Behr JP: An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther. (1996). 3 : 1010–1017

    PubMed  CAS  Google Scholar 

  2. Mislick KA, Baldeschwieler JD: Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA (1996). 93:12349–12354

    Article  PubMed  CAS  Google Scholar 

  3. Behr JP, Demeneix BA, Loeffler J, Perez-Mutul J: Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA (1989). 86: 6982–6986

    Article  PubMed  CAS  Google Scholar 

  4. Boussif O, Lezoualc’h F, Zanta MA, Mergny M, Scherman D, Demeneix BA, Behr J-P: A novel, versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci USA. (1995). 92: 7297–7303

    Article  PubMed  CAS  Google Scholar 

  5. Remy JS, Kichler A, Mordinov V, Schuber F, Behr JP: Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc. Natl. Acad. Sci. USA (1995). 92 :1744–1748

    Article  PubMed  CAS  Google Scholar 

  6. Behr JP: Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjugate Chem. (1994). 5: 382–389

    Article  CAS  Google Scholar 

  7. Haensler J, Szoka FC: Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. (1993). 4: 32–39.

    Google Scholar 

  8. Tang MX, Redemann CT, Szoka FC: In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chemistry (1996). 7 :703–714

    Article  PubMed  CAS  Google Scholar 

  9. Suh J, Paik H-J, Hwang BK: Ionization of polyethylenimine and polyallylamine at various pH’s. Bioorg. Chem. (1994). 22:318–327

    Article  CAS  Google Scholar 

  10. Nelson N: Structure and pharmacology of the proton ATPases. Trends Pharmacol. Sci (1991). 12 :71–75

    Article  PubMed  CAS  Google Scholar 

  11. Behr JP: DNA strongly binds to micelles and vesicles containing lipopolyamines or lipointercalants. Tetrahedron Lett. (1986). 27:5861–5864

    Article  CAS  Google Scholar 

  12. Remy JS, Sirlin CS, Vierling P, Behr JP: Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjugate Chem. (1994). 5: 647–654

    Article  CAS  Google Scholar 

  13. Wheeler CJ, Sukhu L, G. Y, Tsai YJ, C. B, Feigner PL, J. N, Marshall J, Manthorpe M: Converting an alcohol to an amine in a cationic lipid dramatically alters the co-lipid requirement, cellular transfection activity and the ultrastructure of DNA-cytofectin complexes. Biochim. Biophys. Acta (1996). 1280: 1–11

    Article  PubMed  Google Scholar 

  14. Meunier-Durmont C, Grimai H, Sachs L, Demeneix BA, Forest C: Adenovirus enhancement of polyethyeleimine-mediated transfer of regulated genes in differentiated cells. Gene Ther. (1997). In press

    Google Scholar 

  15. Plank C, Mechtler K, Szoka FC, Wagner E: Activation of the complement system by synthetic DNA complexes: A potential barrier for intravenous gene delivery. Hum. Gene Ther. (1996). 7 :1437–1446

    Article  PubMed  CAS  Google Scholar 

  16. Demeneix BA, Abdel-Taweb H, Benoist C, Seugnet I, Behr JP: Temporal and spatial expression of lipospermine-compacted genes transferred into chick embryos in vivo. BioTechniques (1994). 16 :496–501

    PubMed  CAS  Google Scholar 

  17. Tsukamoto M, Ochiya T, Yoshida S, Sugimura T, Terada M: Gene transfer and expression in progeny after intravenous DNA injection into pregnant mice. Nature Genet. (1995). 9 : 243–248

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz B, Benoist C, Abdallah B, Scherman D, Behr JP, Demeneix BA: Lipospermine-based gene transfer into the newborn mouse brain is optimized by a low lipospermine/DNA charge ratio. Hum. Gene Ther. (1995). 6:1515–1524

    Article  PubMed  CAS  Google Scholar 

  19. Thierry AR, Lunardy-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC: Systematic gene therapy: Biodistribution and long-term expressionof a transgene in mice. Proc. Natl. Acad. Sci. USA (1995). 92: 9742–9746

    Article  PubMed  CAS  Google Scholar 

  20. Stewart AJ, Pichon C, Meunier L, Midoux P, Monsigny M, Roche AC: Enhanced biological activity of oligonucleotides complexed with glycosylated poly-L-lysine. Mol. Pharmacol. (1996). 50 :1487–1494

    PubMed  CAS  Google Scholar 

  21. Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML : Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene transfer vehicle. Proc. Natl. Acad. Sci. U.S.A. (1992). 89: 7934–7938

    Article  PubMed  CAS  Google Scholar 

  22. Cook DR, Maxwell IH, Glode LM, Maxwell F, J.O. S, Purner MB, Wagner E, Curiel DT, Curiel TJ: Gene therapy for B-cell lymphoma in a SCID mouse model using an immunoglobulin-regulated diphteria toxin gene delivery by a novel adenovirus-polylysine conjugate. Cancer Biother. (1994).9:131–141

    Article  PubMed  CAS  Google Scholar 

  23. Bottger M, Vogel F, Platzer M, Kiessling U, Grade K, Strauss M: Condensation of vector DNA by the chromosomal protein HMG1 results in efficient transfection. Biochim Biophys Acta (1988). 950:221–228

    PubMed  CAS  Google Scholar 

  24. Hagstrom JE, Sebestyen MG, Budker V, Ludtke JJ, Fritz JD, Wolff JA: Complexes of non-cationic liposomes and histone HI mediate efficient transfection of DNA without encapsulation Biochim. Biophys. Acta (1996). 1284:47–55

    Article  Google Scholar 

  25. Remy JS, Abdallah B, Zanta MA, Boussif O, Behr JP, Demeneix BA: Gene transfer with lipospermines and polyethylenimines. Advanced Drug Delivery Reviews (1997). In press.

    Google Scholar 

  26. Demeneix BA, Behr JP. The proton sponge: a trick the viruses did not exploit. Artificial Self-Assembling Systems for Gene Delivery (1996). 146–151

    Google Scholar 

  27. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA: A powerful non-viral vector for in-vivo gene transfer into the adult mammalian brain : polyethylenimine. Hum. Gene Ther. (1996).

    Google Scholar 

  28. Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A: Polyethylenimine-mediated DNA Transfection of Peripheral and Central Neurons in Primary Culture: Probing Ca2+ Channel Structure and Function with Antisens Oligonucleotides. Mol. Cell. Neurosci. (1996). 7 : 239–246

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demeneix, B.A., Goula, D., Benoist, C., Rémy, J.S., Behr, J.P. (1998). Theory and Practice of Using Polycationic Amphiphiles and polymers for In Vitro and In Vivo Gene Transfer. In: Xanthopoulos, K.G. (eds) Gene Therapy. NATO ASI Series, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72160-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72160-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72162-5

  • Online ISBN: 978-3-642-72160-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics