Methods of Nuclear Medicine to Verify Vitality and Efficacy of TMLR

  • H. Eichstädt
Conference paper


Nuclear medicine diagnosis of myocardial vitality is of particular importance to decision-making on indication in preparation for TMLR therapy and for prognostic appraisal of patients concerned. Among four pathophysiologically distinguishable forms of contractile dysfunction, no differentiation is possible between hibernating myocardium and scar with pure perfusion indicators. However, on account of determinants for activity distribution in advanced-phase images, above all in the wake of 201TI injection, this radiopharmaceutical has proved helpful in many cases to differentiate myocardial ischaemia at rest from scar, which is of major importance to indication for transmyocardial laser revascularisation. Owing to the perfusion indicators nowadays available, myocardial “stunning” can be differentiated without any problem from ischaemia at rest or scar. While the results of vital diagnosis obtainable from 201TI scintigraphy with optimised test protocol come close to those obtainable from positron emission tomography with 18F-FDG, the latter has remained to be the reference method, primarily in cases of high-severity left-ventricular dysfunction and known coronary occlusion.


Myocardial Blood Flow Viable Myocardium Contractile Dysfunction Reverse Redistribution Dilsizian Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altehöfer C, vom Dahl J, Biedermann M (1994) Significance of defect severity in technetium 99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine- 18-FDG PET. J Nucl Med 35:569–574Google Scholar
  2. 2.
    Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD (1991) Aclive downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res 69:1458–1469PubMedGoogle Scholar
  3. 3.
    Baer FM, Voth E, Deutsch HJ et al. (1994) Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18-fluorodeoxy- glucose positron emission tomography. J Am Coll Cardiol 24:343–353PubMedCrossRefGoogle Scholar
  4. 4.
    Bartenstein P, Schober O, Hasfeld M et al. (1992) Thallium-201 single photon emission tomography of myocardium:Additional information in reinjection studies is dependent on collateral circulation. Eur J Nucl Med 19:790–795PubMedCrossRefGoogle Scholar
  5. 5.
    Beanlands RS, Dawood F, Wen WH et al. (1990) Are kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 82:1802–1843PubMedCrossRefGoogle Scholar
  6. 6.
    Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T (1986) Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7:580–589PubMedCrossRefGoogle Scholar
  7. 7.
    Beller G A, Holzgrefe HH, Watson DD (1983) Effects of dipyridamole-induced vasodilation on myocardial uptake and clearance kinetics of thallium-201. Circulation 68:1328–1338PubMedCrossRefGoogle Scholar
  8. 8.
    Beller GA, Sinusas AJ (1990) Experimental studies of the physiologic properties of technetium-99m isonitriles. Am J Cardiol 16:66:5E–8ECrossRefGoogle Scholar
  9. 9.
    Beller GA, Watson DD, Ackell P et al. (1980) Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation 61:791–797PubMedGoogle Scholar
  10. 10.
    Beller GA (1993) Myocardial reperfusion imaging: Basic principles and clinical applications. Am J Card Imaging, pp 11–23Google Scholar
  11. 11.
    Berger BC, Watson D, Burbell LR et al. (1979) Redistribution of thallium at rest and in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 60:1125–1131Google Scholar
  12. 12.
    Bolli R, Jeraudi MO, Patel BS et al. (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86:4695–4699PubMedCrossRefGoogle Scholar
  13. 13.
    Bolli R, Zhu W-X Myers ML, Hartley CJ, Roberts R (1985) Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent deterioration. Am J Cardiol 56:964–968PubMedCrossRefGoogle Scholar
  14. 14.
    Bolli R, Zhu W-X, Thornby JI, O’Neill PG, Roberts R (1988) Time course and determinations of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 254:H102–H114PubMedGoogle Scholar
  15. 15.
    Bolli R (1988) Oxygen-derived free radicals and postischemic myocardial dysfunction (“stunned myocardium”). J Am Coll Cardiol 12:239–249PubMedCrossRefGoogle Scholar
  16. 16.
    Bonow RO, Dilsizian V, Cuocolo A et al. (1991) Identification of viable myocardium in patients with chronic ischemic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18-F- fluorodeoxyglucose. Circulation 83:26–37PubMedGoogle Scholar
  17. 17.
    Braunwald E, Kloner PA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149PubMedCrossRefGoogle Scholar
  18. 18.
    Brunken R, Schwaiger M, Grover-McKay M et al. (1987) Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium defects. J Am Coll Cardiol 10:557–567PubMedCrossRefGoogle Scholar
  19. 19.
    Brunken RC, Kottou S, Nienaber CA et al. (1989) PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT. Radiology 65:65–73Google Scholar
  20. 20.
    Budinger TF, Knittel BL (1987) Cardiac thallium redistribution and model. J Nucl Med 25:588Google Scholar
  21. 21.
    Budinger TF, Pohost GM (1986) Thallium “redistribution” - An explanation. J Nucl Med 27:996Google Scholar
  22. 22.
    Bell U, Altehoefer C (1974–1992) (1993) Die Tl–201 Myokardszintigraphie: Vom Perfusionsdefekt zum Vitalitätsnachweis. Nucl-Med; 32:1–5Google Scholar
  23. 23.
    Camacho SA, Lanzer P, Toy BJ et al. (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Am Heart J 116:701–708PubMedCrossRefGoogle Scholar
  24. 24.
    Canby RC, Silber S, Pohost GM (1990) Relations of the myocardial imaging agents Tc- 99m-MIBI and Tl-201 to myocardial blood flow in a canine model of myocardial ischemic insult. Circulation 81:289–296PubMedCrossRefGoogle Scholar
  25. 25.
    Cloninger KG, DePeuy EG, Garcia EV et al. (1988) Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic images: An over estimation of myocardial scarring. J Am Coll Cardiol 12:955–963PubMedCrossRefGoogle Scholar
  26. 26.
    Dae MW, Botvinick EH, Starksen NF et al. (1991) Do 4-hour reinjection thallium images and 24-hour thallium images provide equivalent information? J Am Coll Cardiol 17:29CrossRefGoogle Scholar
  27. 27.
    DeBoer LWV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77:5471–5475PubMedCrossRefGoogle Scholar
  28. 28.
    Dilsizian V, Bacharach SL, Perrone-Filardi P et al. (1991) Concordance and discordance between rest-redistribution thallium imaging and thallium reinjection after stress redistribution imaging for assessing viable myocardium: Comparison with metabolic activity by PET. Circulation 84:89Google Scholar
  29. 29.
    Dilsizian V, Arrighi JA, Diodati JG et al. (1994) Myocardial viability in patients with chronic coronary artery disease. Comparison of Tc-99m-Sestamibi with thallium reinjection and (18F) fluoro-deoxyglucose. Circulation 89:578–587PubMedGoogle Scholar
  30. 30.
    Dilsizian V, Rocco T, Strauss W et al. (1989) Technetium-99m isonitrile myocardial uptake at rest. 1. Relation to severity of coronary artery stenosis. J Am Coll Cardiol 14:1673–1677PubMedCrossRefGoogle Scholar
  31. 31.
    Dilsizian V, Rocco TP, Freedman NM et al. (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146PubMedCrossRefGoogle Scholar
  32. 32.
    Dilsizian V, Smeltzer W, Freedman NM et al. (1991) Thallium reinjection after stress redistribution imaging. Does 24-hour delayed imaging after reinjection enhance detection of viable myocardium? Circulation 83:1247–1255PubMedGoogle Scholar
  33. 33.
    Ehring T, Heusch G (1991) Postextrasystolic potentiation does not distinguish ischaemic from stunned myocardium. Pfluegers Arch 418:453–461CrossRefGoogle Scholar
  34. 34.
    Ellis SG, Wynne J, Braunwald E et al. (1984) Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 107:13–19PubMedCrossRefGoogle Scholar
  35. 35.
    Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988) Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78:729–735PubMedCrossRefGoogle Scholar
  36. 36.
    Flameng W, Suy R, Schwarz F et al. (1981) Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy post vascularization surgery. Am Heart J 102:846–857PubMedCrossRefGoogle Scholar
  37. 36a.
    Frazier OH, Cooley DA, Kadipasaoglu KA (1995) Myocardial Revascularization With Laser. Circulation 92:58–65Google Scholar
  38. 37.
    Freeman I, Grunwald A, Hoory S et al. (1991) Effect of coronary occlusion and myocardial viability on myocardial activity of technetium-99m Sestamibi. J Nucl Med 32:292–298PubMedGoogle Scholar
  39. 38.
    Gallagher KP, Kumada T, Koziol JA et al. (1980) Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62:1266–1274PubMedGoogle Scholar
  40. 39.
    Gallagher KP, Matsuzaki M, Osakada G et al. (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52:716–729PubMedGoogle Scholar
  41. 40.
    Gibson RS, Watson DD, Taylor GJ et al. (1983) Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1:804–815PubMedCrossRefGoogle Scholar
  42. 41.
    Grunwald AM, Watson DD, Holzgrefe HH Jr et al. (1981) Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 64:610–618PubMedCrossRefGoogle Scholar
  43. 42.
    Guth BD, Martin JE, Heusch G (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 10:673–681PubMedCrossRefGoogle Scholar
  44. 43.
    Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44:1115–1121PubMedCrossRefGoogle Scholar
  45. 44.
    Heusch G, Guth BD, Gilpin E et al. (1987) Determinants of recovery of regional contractile function after exercise-induced ischemia in conscious dogs. Fed Proc 46:834Google Scholar
  46. 45.
    Heusch G, Schäfer S, Kröger K (1988) Recruitment of inotropic reserve in “stunned” myocardium by the cardiotonic agent AR-L57. Basic Res Cardiol 83:602–10PubMedCrossRefGoogle Scholar
  47. 46.
    Heusch G (1992) Hibernation, stunning, ischemic preconditioning - neue Paradigmen der koronaren Herzkrankheit. Z Kardiol 81:596–609PubMedGoogle Scholar
  48. 47.
    Hoffmeister HM, Mauser M, Schaper W (1985) Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80:445–458PubMedCrossRefGoogle Scholar
  49. 48.
    Ito BR, Tate H, Kobayashi M et al. (1987) Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 61:834–846PubMedGoogle Scholar
  50. 49.
    Jacobus WE, Pores IH, Lucas SK et al. (1982) Intracellular acidosis and contractility in normal and ischemic hearts examined by 31P NMR. J Mol Cell Cardiol 14:13–20PubMedCrossRefGoogle Scholar
  51. 50.
    Kammermeier H (1963) Verhalten von Adenin-Nukleotiden und Kreatinphosphat im Herzmuskel bei funktioneller Erholung nach länger dauernder Asphyxie. Verh Dtsch Ges Kreislaufforsch 30:206–211Google Scholar
  52. 51.
    Kentish JC (1986) The effects of inorganic phosphate and creatine phosphate on the force production in skinned muscle from rat vesicle. J Physiol 370:585–604PubMedGoogle Scholar
  53. 52.
    Kiat H, Berman DS, Maddahi J et al. (1988) Late reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 12:1456–1463PubMedCrossRefGoogle Scholar
  54. 52a.
    Krabatsch T, Dörschel K, Tülsner J, Hempel B, Hofmeister J, Lieback E, Hetzer R (1995) Transmyokardiale Laserrevaskularisation - Erste Erfahrungen in der Therapie der diffusen koronaren Herzerkrankung. Lasermedizin 11:192–198Google Scholar
  55. 53.
    Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55:176–184PubMedGoogle Scholar
  56. 54.
    Krause SM, Jacobus WE, Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530PubMedGoogle Scholar
  57. 55.
    Kübler W, Katz AM (1977) Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 40:467–471PubMedCrossRefGoogle Scholar
  58. 56.
    Kusuoka H, Koretsune Y, Chacko VP et al. (1990) Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca++ transients underly stunning? Circ Res 66:1268–1276PubMedGoogle Scholar
  59. 57.
    Kusuoka H, Porterfield JK, Weisman HF et al. (1987) Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca 2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961PubMedCrossRefGoogle Scholar
  60. 58.
    Langer A, Burns RJ, Freeman MR et al. (1992) Reverse redistribution on exercise thallium scintigraphy: relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 26:707–710Google Scholar
  61. 59.
    Lee J, Shung CC, Lee K et al. (1994) Biokinetics of thallium-201 in normal subjects: comparison between adenosine, dipyramidole, dobutamine and exercise. J Nucl Med 35:535–541PubMedGoogle Scholar
  62. 60.
    Leppo JA, Macneil PB, Moring AF et al. (1986) Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium. J Nucl Med 27:66–74PubMedGoogle Scholar
  63. 61.
    Leppo JA (1987) Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts. J Nucl Med 28:878–885PubMedGoogle Scholar
  64. 62.
    Liu P, Kiess MC, Okada RD et al. (1985) The persistent defect on exercise thallium imaging and its fate after myocardial revascularization: Does it represent scar or ischemia? Am Heart J 110:996–1001PubMedCrossRefGoogle Scholar
  65. 62a.
    Maisch B, Funck R, Schönian U, Moosdorf R (1996) Indikationen zur transmyokardialen Lasertherapie. Z Kardiol 85:269–279PubMedGoogle Scholar
  66. 63.
    Marban E (1991) Myocardial stunning and hibernation. The physiology behind the colloquialisms. Circulation 83:681–688PubMedGoogle Scholar
  67. 64.
    Mazullo P, Parodi O, Reisenhofer B et al. (1993) Value of rest thallium-201/technetium- 99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 71:166–172CrossRefGoogle Scholar
  68. 65.
    Marshall R, Leidholdt E, Zhang DY et al. (1991) The effect of flow on technetium-99m Teboroxime (SQ30217) and thallium-201 extraction and retention in rabbit heart. J Nucl Med 32:1979–1988PubMedGoogle Scholar
  69. 66.
    Matsuzaki M, Gallagher KP, Kemper WS et al. (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after perfusion. Circulation 68:170–182PubMedCrossRefGoogle Scholar
  70. 67.
    McCallister BD, Clemments IP, Hauser ME et al. (1991) The limited value of 24-hour images following 4-hour reinjection thallium imaging. Circulation 84 (suppl II):II–533Google Scholar
  71. 68.
    Mercier JC, Lando U, Kanmatsuse K et al. (1982) Divergent effects of inotropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 66:397–400PubMedCrossRefGoogle Scholar
  72. 68a.
    Moosdorf R, Maisch B, Höffken H (1996) Transmyokardiale Laserrevaskularisation - Grenzen und Möglichkeiten. Z Kardiol 85:281–285PubMedGoogle Scholar
  73. 68b.
    Moosdorf R, Schoebel FC, Hort W (1997) Transmyokardiale Laserrevaskularisation - morphologische, pathophysiologische und historische Grundlagen der indirekten Revaskularisation des Herzmuskels. Z. Kardiol. 1997, 86:149–164PubMedCrossRefGoogle Scholar
  74. 69.
    Mori T, Minamiyi K, Kurogane H et al. (1991) Rest injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 32:1718–1724PubMedGoogle Scholar
  75. 69a.
    Nägele H, Kalmar P, Nienaber CA, Rödiger W, Stubbe HM (1997) Stellenwert der transmyokardialen Laser-Revaskularisation bei therapiefraktärer koronarer Herzkrankheit. Dtsch med Wschr 122:1117–1120PubMedCrossRefGoogle Scholar
  76. 69b.
    Nägele H, Kalmar P, Lübeck M, Marcsek P, Nienaber CA, Rödiger W, Stiel GM, Stubbe HM (1997) Transmyokardiale Laserrevaskularisation - Behandlungsoption der koronaren Herzerkrankung? Z Kardiol 86:171–178PubMedCrossRefGoogle Scholar
  77. 70.
    Nakajima K, Taki J, Shuke N et al. (1993) Myocardial perfusion imaging and dynamic analysis with technetium-99m-tetrofosmin. J Nucl Med 34:1478–1484PubMedGoogle Scholar
  78. 71.
    Nielsen A, Morris K, Murdock R et al. (1980) Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercice. Circulation 4797–4801Google Scholar
  79. 72.
    Pantely GA, Malone SA, Rhen WS et al. (1990) Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67:1481–1493PubMedGoogle Scholar
  80. 73.
    Picano E, Marzullo P, Gigli G et al. (1992) Identification of viable myocardium by dipyridamol-induced improvement in regional left ventricular function by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest. Am J Cardiol 70:252–258PubMedCrossRefGoogle Scholar
  81. 74.
    Pierard L, Landsheere C, Berthe C, Rigo P, Kulbertus H (1990) Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 15:1921–1931CrossRefGoogle Scholar
  82. 75.
    Pohost GM, Okade RD, O’Keefe DD et al. (1981) Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res 48:439–446PubMedGoogle Scholar
  83. 76.
    Pohost GM, Zir LM, Moore RH et al. (1977) Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 55:294–302PubMedGoogle Scholar
  84. 77.
    Rocco TP, Dilsizian V, McKusick KA et al. (1990) Comparison of thallium redistribution with rest “reinjection” imaging for the detection of viable myocardium. Am J Cardiol 66:158–163PubMedCrossRefGoogle Scholar
  85. 78.
    Ross Jr J (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083PubMedGoogle Scholar
  86. 79.
    Rozanski A, Berman DS, Gray R et al. (1981) Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981; 64:936–944PubMedCrossRefGoogle Scholar
  87. 80.
    Schäfer S, Heusch G (1990) Recruitment of a time dependent inotropic reserve by post-extrasystolic potentiation in normal and reperfused myocardium. Basic Res Cardiol 85:257–269PubMedCrossRefGoogle Scholar
  88. 81.
    Schäfer S, Lindner C, Heusch G (1990) Xamoterol recruits an inotropic reserve in the acutely failing, reperfused canine myocardium without detrimental effects on its subsequent recovery. Naunyn-Schmiedebergs Arch Pharmacol 342:206–213PubMedCrossRefGoogle Scholar
  89. 82.
    Schelbert X, Buxton D (1988) Insights into coronary artery disease gained from metabolic imaging. Circulation 78:496–505PubMedCrossRefGoogle Scholar
  90. 83.
    Schneider CA, Voth E, Theissen P et al. (1994) Vitalitätsbeurteilung chronischer Myokardinfarkte durch F-18-FluoroD-Glukose-Positronenemissionstomographie und Tc- 99m-MIBI-SPECT. Z Kardiol 83:124–131PubMedGoogle Scholar
  91. 84.
    Schober O, Hasfeld M, Matheja P, Schäfers M, Breithardt G (1991) Thallium reinjection vs redistribution in severe stenosis of coronary arteries dependent on the collateralization. Eur J Nucl Med 18:538Google Scholar
  92. 85.
    Schulz R, Guth BD, Pieper K et al. (1992) Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery: a model of shortterm hibernation. Circ Res 70:1282–1295PubMedGoogle Scholar
  93. 86.
    Silberstein EB, DeVries DE (1985) Reverse redistribution phenomenon in thallium-201 stress tests: angiographic correlation and clinical significance. J Nucl Med 26:707–710PubMedGoogle Scholar
  94. 87.
    Sinusas A, Wason D, Cannon J et al. (1989) Effect of ischemia and post ischemic dysfunction on myocardial uptake of technetium-99m labeled methoxybutyl isonitrile and thallium-201. J Am Coll Cardiol 14:1785–1793PubMedCrossRefGoogle Scholar
  95. 88.
    Smart S, Sawada S, Ryan T et al. (1993) Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 88:405–415PubMedGoogle Scholar
  96. 88a.
    Smith JA, Dunning JJ, Parry AJ, Large SR, Wallwork, J (1995) Transmyocardial Laser Revascularization. Journal of Cardiac Surgery 10:569–672PubMedCrossRefGoogle Scholar
  97. 89.
    Sinusas AJ, Trautmann KA, Bergin JD et al. (1990) Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation 82:1424–1437PubMedCrossRefGoogle Scholar
  98. 90.
    Strauer BE, Bürger S, Büll U (1978) Multifactorial determination of Thallium-201 uptake of the head: an experimental study concerning the influence of ventricular mass, perfusion and oxygen consumption. Basic Res Cardiol 73:298–306PubMedCrossRefGoogle Scholar
  99. 91.
    Strauss HW, Harrison K, Langan JK et al. (1975) Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 51:641–645PubMedGoogle Scholar
  100. 92.
    Swain JL, Sabina RL, McHale PA et al. (1982) Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 242:H818–H826PubMedGoogle Scholar
  101. 93.
    Tamaki N, Othani H, Yamashita K et al. (1991) Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 32:673–678PubMedGoogle Scholar
  102. 94.
    Tamaki N, Othani H, Yonekura Y et al. (1990) Significance of fill-in after thallium-201 reinjection following delayed imaging: Comparison with regional wall motion and angiographic findings. J Nucl Med 31:1617–1623PubMedGoogle Scholar
  103. 95.
    Tamaki N, Yonekura Y, Yamashita K et al. (1988) Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol 52:202–208CrossRefGoogle Scholar
  104. 96.
    Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47:201–207PubMedGoogle Scholar
  105. 97.
    Verani MS, Jeroudi MO, Mahmarian JJ et al. (1988) Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis 2-methoxyisobutyl isonitrile. J Am Coll Cardiol 12:1573–1581PubMedCrossRefGoogle Scholar
  106. 98.
    Wackers FJTh, Gibbons RJ, Verani MS et al. (1989) Serial quantitative planar technetium-99m isonitrile imaging in acute myocardial infarction: Efficacy for noninvasive assessment of thrombolytic therapy. J Am Coll Cardiol 14:861–873PubMedCrossRefGoogle Scholar
  107. 99.
    Weich HF, Strauss HW, Pitt B (1977) The extraction of thallium-201 by the myocardium. Circulation 56:188–191PubMedGoogle Scholar
  108. 100.
    Weiss AT, Maddahi J, Lew AS et al. (1986) Reverse redistribution of thallium-201: a sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 7:61–67PubMedCrossRefGoogle Scholar
  109. 101.
    Yang L, Berman DS, Kial H et al. (1990) The frequency of late reversibility in SPET thallium-201 stress-redistribution studies. J Am Coll Cardiol 15:334–340PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Eichstädt

There are no affiliations available

Personalised recommendations