Skip to main content

Integration of Ion Channel Activity in Calcium Signalling Pathways

  • Conference paper
Cellular Integration of Signalling Pathways in Plant Development

Part of the book series: NATO ASI Series ((ASIH,volume 104))

  • 174 Accesses

Abstract

Perception of a wide range of developmental and stress signals by plants results in rapid elevation of cytosolic free calcium ([Ca2+]c: Bush, 1995). The change in [Ca2+]c is widely accepted to comprise an early step in signal transduction, with downstream targets of the Ca2+ signal including activation of calmodulin-dependent enzymes, calmodulin-domain protein kinases (CDPKs: Roberts & Harmon, 1992), or activation of ion channels (Schroeder & Hagiwara, 1989). Yet this simple notion gives rise to a number of equally elementary questions:

  • From which compartment is Ca2+ mobilised?

  • Which membrane pathways (ion channels) facilitate passive Ca2+ flow into the cytosol in response to the primary signal?

  • How do these Ca2+-permeable channels interact with other cellular response elements (including other ion channels, ligands and phosphorylation cascades) to evoke the Ca2+ signal?

  • How is stimulus specificity encoded in the Ca2+ signal?

Answers to all four questions require as a first step an understanding of the properties of Ca2+-permeable channels in plant cells: which membranes the channels are located in, what activates (gates) them, and how their activities might be integrated with other signalling pathways in the cell. The remainder of this chapter highlights areas of achievement and of ignorance in our attempts to address these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre J, Lassalles JP & Kado RT (1990) Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343: 567– 570

    Google Scholar 

  • Allen GJ, Muir SR & Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both insp(3) and cyclic ADP-ribose. Science 268: 735–737

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ & Sanders D (1994a) Osmotic-stress enhances the competence of beta- vulgaris vacuoles to respond to inositol 1,4,5-trisphosphate. Plant J. 6: 687–695

    Article  CAS  Google Scholar 

  • Allen GJ & Sanders D (1994b) Voltage-gated, calcium-release channels coreside in the vacuolar membrane of broad bean guard-cells. Plant Cell 6: 685–694

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ & Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+ permeable slow vacuolar ion-channel of stomatal guard-cells. Plant Cell 7: 1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ & Sanders D (1996) Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium. Plant J 10: 1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Allen GJ & Sanders D (1997) Vacuolar ion channels of higher plants. Adv. Bot. Res. 25: 217–252

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Calcium and plant action-potentials. Plant Cell Environ. 7: 415– 421

    Google Scholar 

  • Bethke PC & Jones RL (1994) Ca2+ -calmodulin modulates ion-channel activity in storage protein vacuoles of barley aleurone cells. Plant Cell 6: 277–285

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR (1987) Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and different- current-voltage analysis. J. Membrane Biol. 102: 235–246

    Article  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H & Chua N-H (1994) Cyclic-GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JM & Sanders D (1990) Inositol trisphosphate-mediated calcium release in beet microsomes is inhibited by heparin. FEBS Letts. 260: 70–72

    Article  CAS  Google Scholar 

  • Brosnan JM & Sanders D (1993) Identification and characterization of high-affinity binding sites for inositol trisphosphate in red beet. Plant Cell 5: 931–940

    Article  CAS  PubMed  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signalling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 95–122

    Article  CAS  Google Scholar 

  • Cove DJ & Knight CD (1993) The moss physcomitrella-patens, a model system with potential for the study of plant reproduction. Plant Cell 5: 1483–1488

    Article  PubMed  Google Scholar 

  • Ding JP & Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 3: 83–110

    Article  CAS  Google Scholar 

  • Ermolayeva E, Hohmeyer H, Johannes E & Sanders D (1996) Calcium-dependent membrane depolarization activated by phytochrome in the moss Physcomitrella patens. Planta 199: 352–358

    Article  CAS  Google Scholar 

  • Ermolayeva E, Sanders D & Johannes E (1997) Ionic mechanism and role of phytochrome-mediated membrane depolarisation in caulonemal side branch initial formation in the moss Physcomitrella patens. Planta 201: 109–118

    Article  CAS  Google Scholar 

  • Franklin-Tong VE, Drobak BK, Allan AC, Watkins PAC & Trewavas A J (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8: 1305–1321

    Article  CAS  PubMed  Google Scholar 

  • Gillot I & Whitaker M (1993) Imaging calcium waves in eggs and embryos. J. Exp. Biol. 184: 213–219

    CAS  Google Scholar 

  • Gradmann D, Johannes E & Hansen U-P (1997) Kinetic analysis of Ca2+/K+ selectivity of an ion channel by single-binding-site models. J. Membrane Biol, in press

    Google Scholar 

  • Hedrich R, Barbier-Brygoo H, Felle H, Flügge UI, Lüttge U, Maathuis FJM, Marx S, Prins HBA, Raschke K, Schnabl H, Schroeder JI, Struve I, Taiz L & Ziegler P (1988) General mechanisms for solute transport across the tonopvacuoles: a patch-clamp survey of ion channels and proton pumps. Botanica Acta 101: 7–13

    CAS  Google Scholar 

  • Hedrich R & Neher E (1987) Cytoplasmic calcium regulates voltage dependent ion channels in plant vacuoles. Nature 329: 833–836

    Article  Google Scholar 

  • Johannes E, Brosnan JM & Sanders D (1992) Parallel pathways for intracellular Ca2+ release from the vacuole of higher plants. Plant J. 2: 97–102

    Article  CAS  Google Scholar 

  • Johannes E, Ermolayeva E & Sanders D (1997) Red light-induced membrane potential transients in the moss Physcomitrella patens: ion channel interaction in phytochrome signalling. J. Exp. Bot. (special issue) 48: 599–608

    Article  CAS  PubMed  Google Scholar 

  • Johannes E & Sanders D (1995) Lumenal calcium modulates unitary conductance and gating of an endomembrane calcium release channel. J. Membr. Biol. 146: 211–224

    CAS  PubMed  Google Scholar 

  • Klusener B, Boheim G, Liss H, Engelberth J & Weiler EW (1995) Gadolinium- sensitive, voltage-dependent calcium-release channels in the endoplasmic-reticulum of a higher plant mechanoreceptor organ. EMBO J 14: 2708–2714

    CAS  PubMed  Google Scholar 

  • Knight H, Trewavas A J & Knight MR (1996) Cold calcium signalling in Arabidopsis involves 2 cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503

    Article  CAS  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM & Trewavas A J (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Lew RR (1991) Electrogenic transport-properties of growing Arabidopsis root hairs - the plasma-membrane proton pump and potassium channels. Plant Physiol. 97: 1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML, MacDermott AB, Westbrook GL, Smith SJ & Barker JL (1987) Agonist-gated and voltage-gated calcium entry in cultured mouse spinal-cord neurons under voltage clamp measured using arsenazo-III. J. Neurosci. 7: 3230– 3244

    CAS  PubMed  Google Scholar 

  • Meharg AA, Maurousset & Blatt MR (1994) Cable correction of membrane currents recorded from root hairs of Arabidopsis thaliana L. J. Exp. Bot. 45: 1–6

    Article  Google Scholar 

  • Miller AJ, Vogg G & Sanders D (1990) Cytosolic calcium homeostasis in fungi - roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Natl. Acad. Sci. USA 87: 9348–9352

    Article  CAS  PubMed  Google Scholar 

  • Muir SR, Bewell M, Sanders D & Allen GJ (1997) Ligand-gated Ca2+ channels and Ca2+ signalling in higher plants. J. Exp. Bot. (special issue) 48: 589–597

    Article  CAS  PubMed  Google Scholar 

  • Muir SR & Sanders D (1996) Pharmacology of Ca2+ release from red beet plants. FEBS Letts. 395: 39–42last of plant

    Article  CAS  Google Scholar 

  • Muir SR & Sanders D (1997) Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower. Plant Physiol, in press

    Google Scholar 

  • Pifieros M & Tester M (1997) Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J. Exp. Bot. (special issue) 48: 551–577

    Article  Google Scholar 

  • Pifieros M & Tester M (1995) Characterization of a voltage-dependent Ca2+- selective channel from wheat roots. Planta 195: 478–488

    Google Scholar 

  • Ranjeva R, Carrasco A & Boudet AM (1988) Inositol trisphosphate stimulates the release of calcium from intact vacuoles from Acer cells. FEBS Letts. 230: 137–141

    CAS  Google Scholar 

  • Roberts DM & Harmon AC (1992) Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 375–414

    Article  CAS  Google Scholar 

  • Roberts SK & Tester M (1997) Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. J. Exp. Bot. 48: 839–846

    Article  CAS  Google Scholar 

  • Schneggenburger R, Zhou Z, Konnerth A & Neher E (1993) Fractional contribution of calcium to the cation current through glutamate-receptor channels. Neuron 11: 133–143

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI & Hagiwara S (1989) Cytosolic Ca2+ regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427–430

    Article  Google Scholar 

  • Schumaker KS & Sze H (1987) Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J. Biol. Chem. 262: 3944–3946

    CAS  PubMed  Google Scholar 

  • Shacklock PS, Read ND & Trewavas A J (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358: 753–755

    Article  CAS  Google Scholar 

  • Shen P & Larter R (1995) Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. Cell Calcium 17: 225–232

    Article  CAS  PubMed  Google Scholar 

  • Taylor AR, Manison NFH, Fernandez C, Wood J & Brownlee C (1996) Spatial organization of calcium signalling involved in cell volume control in the Fucus rhizoid. Plant Cell 8: 2015–2031

    Article  CAS  PubMed  Google Scholar 

  • Taylor CW & Marshall ICB (1992) Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. TIBS 17: 403–407

    CAS  PubMed  Google Scholar 

  • Thomas MV (1982) Techniques in calcium research. London, Academic Press

    Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R & Schroeder JI (1994) Recruitment of plasma membrane voltage-dependent calcium-permeable channels in carrot cells. EMBO J. 13: 2970–2975

    CAS  PubMed  Google Scholar 

  • Tyerman SD (1992) Anion channels in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 351–373

    Article  CAS  Google Scholar 

  • Ward JM, Pei Z-M & Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7: 833–844

    Article  CAS  PubMed  Google Scholar 

  • Ward JM & Schroeder JI (1994) Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar channels in guard cell vacuoles implicated in the control of stomatal closure. Plant Cell 6: 669–683

    Article  CAS  PubMed  Google Scholar 

  • White PJ (1994) Characterization of a voltage-dependent cation-channel from the plasma membrane of rye (Secale cereale L.) roots in planar lipid bilayers. Planta 193: 186–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanders, D., Allen, G.J., Muir, S.R., Roberts, S.K. (1998). Integration of Ion Channel Activity in Calcium Signalling Pathways. In: Lo Schiavo, F., Last, R.L., Morelli, G., Raikhel, N.V. (eds) Cellular Integration of Signalling Pathways in Plant Development. NATO ASI Series, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72117-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72117-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72119-9

  • Online ISBN: 978-3-642-72117-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics