Skip to main content
Book cover

Reoviruses I pp 137–153Cite as

Reovirus Cell Attachment Protein σ1: Structure-Function Relationships and Biogenesis

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 233/1))

Abstract

The reovirus σ1 protein is encoded by the S1 gene segment and is probably the most extensively studied of all reovirus proteins. This is mainly because σl is the reovirus cell attachment protein and, as such, represents the first viral protein the cell encounters during reovirus invasion. As fibrous structures extending from the 12 vertices of the viral icosahedron, σl allows ready access of the virus to host cell receptors as well as multivalent binding, which is important for the subsequent virus internalization step. While the cell-binding function of σl can be readily demonstrated in vitro, the in vivo functions of σl have been deduced mainly from studies of animals infected with genetic reassortants derived from the three reovirus serotypes. It is interesting to note that most of the in vivo functions ascribed to σl can be explained by its cell-binding activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjea AC, Joklik WK (1990) Reovirus protein al translated in vitro, as well as truncated derivatives of it that lack up to two-thirds of its C-terminal portion, exists as two major tetrameric molecular species that differ in electrophoretic mobility. Virology 179: 460–462

    Article  PubMed  CAS  Google Scholar 

  • Banerjea AC, Brechling KA, Ray CA, Erikson H, Pickup DJ, Joklik WK (1988) High-level synthesis of biologically active reovirus protein al in a mammalian expression vector system. Virology 167: 601–612

    PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Jayasuriya A, Chatterjee D, Sonenberg N, Maize] JV Jr, Fields BN (1985) Sequence of reovirus hemagglutinin predicts a coiled-coil structure. Nature 315: 421–423

    Article  PubMed  CAS  Google Scholar 

  • Bassel-Duby R, Nibert ML, Homcy CJ, Fields BN, Sawutz DG (1987) Evidence that the sigma 1 protein of reovirus serotype 3 is a multimer. J Virol 61: 1834–1841

    PubMed  CAS  Google Scholar 

  • Bruck C, Co MS, Slaoui M, Gaulton GN, Smith T, Fields BN, Mullins JI, Greene MI (1986) Nucleic acid sequence of an internal image-bearing monoclonal anti-idiotype and its comparison to the sequence of the external antigen. Proc Natl Acad Sci USA 83: 6578–6582

    Article  PubMed  CAS  Google Scholar 

  • Burstin SJ, Spriggs DR, Fields BN (1982) Evidence for functional domains on the reovirus type 3 hemagglutinin. Virology 117: 146–155

    Article  PubMed  CAS  Google Scholar 

  • Cashdollar LW, Chmelo RA, Wiener JR, Joklik WK (1985) Sequences of the SI genes of the three serotypes of reovirus. Proc Natl Acad Sci USA 82: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Choi AHC (1994) Internalization of virus binding proteins during entry of reovirus into K562 erythroleukemia cells. Virology 200: 301–306

    Article  PubMed  CAS  Google Scholar 

  • Choi AHC, Paul RW, Lee PWK (1990) Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology 178: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Dermody TS, Nibert ML, Bassel-Duby R, Fields BN (1990a) Sequence diversity in S1 genes and SI translation products of 11 serotype 3 reovirus strains. J Virol 64: 4842–4850

    PubMed  CAS  Google Scholar 

  • Dermody TS, Nibert ML, Bassel-Duby R, Fields BN (1990b) A al region important for hemagglutination by serotype 3 reovirus strains. J Virol 64: 5173–5176

    PubMed  CAS  Google Scholar 

  • Doms RW, Lamb RA, Rose JK, Helenius A (1993) Folding and assembly of viral membrane proteins. Virology 193: 545–562

    Article  PubMed  CAS  Google Scholar 

  • Dryden KA, Wang G, Yeager M, Nibert ML. Coombs KM, Furlong DB, Fields BN, Baker TS (1993) Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122: 1023–1041

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Lee PWK (1994) Localization of two protease-sensitive regions separating distinct domains in the reovirus cell-attachment protein al. Virology 203: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Home D, Cashdollar LW, Joklik WK, Lee PWK (1990) Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus. Virology 174: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Home D, Strong JE, Leone G, Pon RT, Yeung MC, Lee PWK (1991) Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein. Virology 182: 810–819

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J, Tang D, Leone G, Lee PWK (1994) Binding of reovirus to receptor leads to conformational changes in viral capsid proteins that are reversible upon virus detachment. J Biol Chem 269: 17043–17047

    PubMed  CAS  Google Scholar 

  • Finberg R, Weiner HL, Fields BN, Benacerraf B, Burakoff SJ (1979) Generation of cytolytic T lymphocytes after reovirus infection: role of the SI gene. Proc Natl Acad Sci USA 76: 442–446

    Article  PubMed  CAS  Google Scholar 

  • Finberg R, Spriggs DR, Fields BN (1982) Host immune response to reovirus: CTL recognize the major neutralization domain of the viral hemagglutinin. J Immunol 129: 2235–2238

    Google Scholar 

  • Fontana A, Weiner HL (1980) Interaction of reovirus with cell surface receptors. II. Generation of suppressor T cells by the hemagglutinin of reovirus type 3. J Immunol 125: 2660–2664

    PubMed  CAS  Google Scholar 

  • Fraser RDB, Furlong DB, Trus BL, Nibert BN, Fields BN, Steven AC (1990) Molecular structure of the cell-attachment protein of reovirus: correlation of computer-processed electron micrographs with sequence-based predictions. J Virol 64: 2990–3000

    PubMed  CAS  Google Scholar 

  • Furlong DB, Nibert ML, Fields BN (1988) Sigma I protein of mammalian reoviruses extends from the surfaces of viral particles. J Virol 62: 246–256

    PubMed  CAS  Google Scholar 

  • Gaulton GN, Greene MI (1989) Inhibition of cellular DNA synthesis by reovirus occurs through a receptor-linked signaling pathway that is mimicked by antiidiotypic, antireceptor antibody. J Exp Med 169: 197–211

    Article  PubMed  CAS  Google Scholar 

  • Gentsch JR, Pacitti AF (1985) Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment to murine L-cells. J Virol 56: 356–364

    PubMed  CAS  Google Scholar 

  • Gentsch JR, Pacitti AF (1987) Differential interaction of reovirus type 3 with sialylated receptor components on animal cells. Virology 161: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Gilmore R, Coffey MC, Leone G, McLure K, Lee PWK (1996) Co-translational trimerization of the reovirus cell attachment protein. EMBO J 15: 2651–2658

    PubMed  CAS  Google Scholar 

  • Hooper JW, Fields BN (1996a) Role of the pI protein in reovirus stability and capacity to cause chromium release from host cells. J Virol 70: 459–467

    PubMed  CAS  Google Scholar 

  • Kauffman RS, Wolf JL, Finberg R, Trier JS, Fields BN (1982) The al protein determines the extent of spread of reovirus from the gastrointestinal tract of mice. Virology 124: 403–410

    Article  Google Scholar 

  • Lee PWK, Hayes EC, Joklik WK (1981) Protein al is the reovirus cell attachment protein. Virology 108: 156–163

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Maybaum L, Lee PWK (1992) The reovirus cell attachment protein possesses two independently active trimerization domains: basis of dominant negative effects. Cell 71: 479–488

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Duncan R, Mah DCW, Price A, Cashdollar LW, Lee PWK (1991a) The N-terminal heptad repeat region of reovirus cell attachment protein al is responsible for al oligomer stability and possesses intrinsic oligomerization function. Virology 182: 336–345

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Mah DCW, Lee PWK (1991b) The incorporation of reovirus cell attachment protein al into virions requires the N-terminal hydrophobic tail and the adjacent heptad repeat region. Virology 182: 346–350

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Duncan R, Lee PWK (1991e) Trimerization of the reovirus cell attachment protein (al) induces conformational changes in al necessary for its cell-binding function. Virology 184: 758–761

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Coffey MC, Gilmore R, Duncan R, Maybaum L, Lee PWK (1996) C-terminal trimerization, but not N-terminal trimerization, of the reovirus cell attachment protein is a post-translational and Hsp70/ATP-dependent process. J Biol Chem 271: 8466–8471

    Article  PubMed  CAS  Google Scholar 

  • Mah DC, Leone G, Jankowski JM, Lee PWK (1990) The N-terminal quarter of reovirus cell attachment protein a1 possesses intrinsic virion-anchoring function. Virology 179: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Nagata L, Masri SA, Mah DCW, Lee PWK (1984) Molecular cloning and sequencing of the reovirus (serotype 3) SI gene which encodes the viral cell attachment protein al. Nucleic Acids Res 12: 8699–8710

    Article  PubMed  CAS  Google Scholar 

  • Nagata L, Masri SA, Pon RT, Lee PWK (1987) Analysis of functional domains on reovirus cell attachment protein al using cloned al gene deletion mutants. Virology 160: 162–168

    Article  PubMed  CAS  Google Scholar 

  • Nibert ML, Fields BN (1992) A carboxy-terminal fragment of protein pl/µ1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 66: 6408–6418

    PubMed  CAS  Google Scholar 

  • Nibert ML, Dermody TS, Fields BN (1990) Structure of the reovirus cell-attachment protein: a model for the domain organization of al. J Virol 64: 2976–2989

    PubMed  CAS  Google Scholar 

  • Nibert ML, Chappell JD, Dermody TS (1995) Infectious subvirion particles of reovirus type 3 Dearing exhibit a loss in infectivity and contain a cleaved sigma 1 protein. J Virol 69: 5057–5067

    PubMed  CAS  Google Scholar 

  • Paul RW, Lee PWK (1987) Glycophorin is the reovirus receptor on human erythrocytes. Virology 159: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Paul RW, Choi AHC, Lee PWK (1989) The a-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1981) Reovirus inhibition of cellular DNA synthesis: role of the SI gene. J Virol 38: 389–392

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Fields BN (1985) Pathogenesis of viral infections. Basis concepts derived from the reovirus model. New Engl J Med 312: 486–497

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AH, Chen LB, Fields BN (1982) The interaction of mammalian reoviruses with the cytoskeleton of monkey kidney CV-1 cells. Virology 120: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Siegel LM, Monty KJ (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel infiltration and density gradient centrifugation: application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta 112: 346–362

    Article  PubMed  CAS  Google Scholar 

  • Spriggs DR, Kaye K, Fields BN (1983) Topological analysis of the reovirus type 3 hemagglutinin. Virology 127: 220–224

    Article  PubMed  CAS  Google Scholar 

  • Strong JE, Lee PWK (1996) The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J Virol 70: 612–616

    PubMed  CAS  Google Scholar 

  • Strong JE, Leone G, Duncan R, Sharma RK, Lee PWK (1991) Biochemical and biophysical characterization of the reovirus cell attachment protein al: evidence that it is a homotrimer. Virology 184: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Strong JE, Tang D, Lee PWK (1993) Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology 197: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Strong JE, Lee PWK (1993) Recognition of the epidermal growth factor receptor by reovirus. Virology 197: 412–414

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Duncan R, Lee PWK (1992) Site-directed mutagenesis of the c-terminal portion of reovirus protein al: evidence for a conformation-dependent receptor binding domain. Virology 186: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL, Bronson RT, Byers KB, Fields BN (1985) Molecular basis of viral neurotropism: experimental reovirus infection. Neurology 35: 88–92

    PubMed  CAS  Google Scholar 

  • Tyler KL, McPhee DA, Fields BN (1986) Distinct pathways of viral spread in the host determined by reovirus al gene segment. Science 233: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Tyler KL, Squier MKT, Rodgers SE, Schneider BE, Oberhaus SM, Grdina TA, Cohen JJ, Dermody TS (1995) Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sl. J Virol 69: 6972–6979

    PubMed  CAS  Google Scholar 

  • Tyler KL, Squier MKT, Brown AL, Pike B, Willis D, Oberhaus SM, Dermody TS, Cohen JJ (1996) Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: role of the SI and M2 genes. J Virol 70: 7984–7991

    PubMed  CAS  Google Scholar 

  • Weiner HL, Fields BN (1977) Neutralization of reovirus: the gene responsible for the neutralization antigen. J Exp Med 146: 1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Drayna D, Averill DR Jr, Fields BN (1977) Molecular basis of reovirus virulence: role of the SI gene. Proc Natl Acad Sci USA 74: 5744–5748

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Ramig RF, Mustoe TA, Fields BN (1978) Identification of the gene coding for the hem-agglutinin of reovirus. Virology 86: 581–584

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Powers ML, Fields BN (1980a) Absolute linkage of virulence and central nervous system cell tropism of reoviruses to viral hemagglutinin. J Infect Dis 141: 609–616

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Greene MI, Fields BN (1980b) Delayed hypersensitivity in mice infected with reovirus. I. Identification of host and viral gene products responsible for the immune response. J Immunol 125: 278–282

    PubMed  CAS  Google Scholar 

  • Williams WV, Guy HR, Rubin DH, Robey F, Myers JM, Kieber-Emmons T, Weiner DB, Greene MI (1988) Sequences of the cell-attachment sites of reovirus type 3 and its anti-idiotypic/antireceptor antibody: modeling of their three-dimensional structures. Proc Natl Acad Sci USA 85: 6488–6492

    Article  PubMed  CAS  Google Scholar 

  • Wilson GJ, Wetzel JD, Puryear W, Bassel-Duby R, Dermody TS (1996) Persistent reovirus infections of L cells select mutations in viral attachment protein erl that alter oligomer stability. J Virol 70: 6598–6606

    PubMed  CAS  Google Scholar 

  • Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, Fields BN (1981) Intestinal M cells: a pathway for entry of reovirus into the host. Science 212: 471–472

    Article  PubMed  CAS  Google Scholar 

  • Wolf JL, Kauffman RS, Finberg R, Dambrauskas R, Fields BN, Trier JS (1983) Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine. Gastroenterology 85: 291–300

    PubMed  CAS  Google Scholar 

  • Yeung MC, Gill MJ, Alibhai SS, Shahrabadi MS, Lee PWK (1987) Purification and characterization of the reovirus cell attachment protein al. Virology 156: 377–385

    Article  PubMed  CAS  Google Scholar 

  • Yeung MC, Lim D, Duncan R, Shahrabadi MS, Cashdollar LW, Lee PWK (1989) The cell attachment proteins of type 1 and type 3 reovirus are differentially susceptible to trypsin and chymotrypsin. Virology 170: 62–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, P.W.K., Gilmore, R. (1998). Reovirus Cell Attachment Protein σ1: Structure-Function Relationships and Biogenesis. In: Tyler, K.L., Oldstone, M.B.A. (eds) Reoviruses I. Current Topics in Microbiology and Immunology, vol 233/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72092-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72092-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72094-9

  • Online ISBN: 978-3-642-72092-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics