Skip to main content

Protein Traffic in Bacteria

  • Conference paper
Book cover Molecular Microbiology

Part of the book series: NATO ASI Series ((ASIH,volume 103))

Abstract

The bacterial plasma (cytoplasmic) membrane, essentially equivalent to the plasma membrane of any living cell, is a lipid bilayer with integral and peripheral membrane proteins that perform a variety of functions ranging from solute transport to gene regulation. Gram-negative bacteria have a second bilayer membrane, the outer membrane, which, unlike the cytoplasmic membrane, contains glycolipids (lipopolysaccharide) located exclusively in the outer leaflet. Both Gram-positive and Gram-negative bacteria possess a peptidoglycan layer that lines the outer surface of the cytoplasmic membrane, and many bacteria have a protein layer (the Slayer), composed of one or a limited number of protein species, that covers the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman E, Kumamoto CA, Emr SD (1991) Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J 10:239–445.

    PubMed  CAS  Google Scholar 

  • Anderson H, von Heijne G (1993) Sec dependent and sec independent assembly of E.coli inner membrane proteins: the topological rules depend on chain length. EMBO J 12:683–691.

    Google Scholar 

  • Bassilana M, Gwizdek C (1996) In vivo membrane assembly of the E. coli polytopic protein, meilibiose permease, occurs via a Sec-independent process which requires the protonmotive force. EMBO J 15:5202–5208.

    PubMed  CAS  Google Scholar 

  • Boland A, Sory M-P, Iriate M, Kerbourch C, Wattiau P, Cornelis GR (1996) Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. entyerocolitica is internalized inside the cytosol of PU5–1.8 marcrophages by the YopB, D, N delivery system. EMBO J 15:5191–5201.

    PubMed  CAS  Google Scholar 

  • Brundage L, Hendrick JP, Schiebel E, Driessen AJM, Widmer W (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitutuion of SecA-dependent precursor protein translocation. Cell 62:649–657.

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Kuhn A, Dalbey RE (1995) The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism. EMBO J 14:866–875.

    PubMed  CAS  Google Scholar 

  • Cornelis GR, Wolf-Watz H (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23:861–867.

    Article  PubMed  CAS  Google Scholar 

  • Cowan SW, Schrimer T, Rummer G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbush JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733

    Article  PubMed  CAS  Google Scholar 

  • de Cock H, Overeem W, Tommassen J (1992) Biogenesis of outer membrane PhoE of Escherichia coli. Evidence for multiple SecB-binding sites in the mature portion of the PhoE protein. J Mol Biol 224:369–379.

    Article  PubMed  Google Scholar 

  • Economou A, Polliano JA, Beckwith J, Oliver DB, Wickner W (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83:1171–1181.

    Article  PubMed  CAS  Google Scholar 

  • Finke K, Plath K, Panzer S, Prehn S, Rapoport TA, Hartmann E, Sommer T (1996) A second trimeric complex containing homologs of the Sec61p complex functions in protein translocation across the ER membrane of S. cerevisiae. EMBO J 15:1482–1494.

    PubMed  CAS  Google Scholar 

  • Hakansson S, Schesser K, Persson C, Galyov EE, Rosquivst R, Homblé F, Wolf-Watz H (1996) The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays contact-dependent membrane disrupting activity. EMBO J 15:5812–5823.

    PubMed  CAS  Google Scholar 

  • Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S (1995) Expression of two csg operons is required for production of fibrobectin-and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670.

    Article  PubMed  CAS  Google Scholar 

  • Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intracellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 93:6562–6566.

    Article  PubMed  CAS  Google Scholar 

  • Hanada M, Nishiyama K-i, Mizushima S, Tokuda H (1994) Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins SecY, SecE and SecG (p12). J Biol Chem 269:23625–23631.

    PubMed  CAS  Google Scholar 

  • Hardie KR, Lory S, Pugsley AP (1996a) Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J 15:978–988.

    CAS  Google Scholar 

  • Hardie KR, Schulze A, Parker MW, Buckley JT (1995) Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. Mol Microbiol 17:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Hardie KR, Seydel A, Guilvout I, Pugsley AP (1996b) The secretin-specific, chaperone-like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol Microbiol 22:967–976

    Article  CAS  Google Scholar 

  • Hartl F-U, Lecker S, Schiebel E, Hendrick JP, Wickner W (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63:269–279.

    Article  PubMed  CAS  Google Scholar 

  • Hirst TR, Holmgren J (1987) Conformation of protein secreted across bacterial outer membanes: a study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci USA 84:7418–7422

    Article  PubMed  CAS  Google Scholar 

  • Hoyt DW, Gierasch LM (1991) A peptide corresponding to an export-defective mutant OmpA signal sequence with asparagine in the hydrophobic core is unable to insert into model membranes. J Biol Chem 266:14406–14412.

    PubMed  CAS  Google Scholar 

  • Hultgren SJ, Normak S, Abraham SN (1991) Chaperone-assisted assembly and moleular architecture of adhesive pili. Ann. Rev. Microbiol. 45:383–415

    Article  CAS  Google Scholar 

  • Hung DL, Knight SD, Woods RM, Pinkner JS, Hultgren SJ (1996) Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15:3792–3805.

    PubMed  CAS  Google Scholar 

  • Ito K (1992) SecY and integral membrane components of the Escherichia coli protein translocation system. Mol Microbiol 6:2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F, Heuser J, Dodson K, Normark S, Hultgren S (1993) Initiation of assembly and association of the structural elements of a bacterial pilus depend on two specialized tip proteins. EMBO J 12:837–847.

    PubMed  CAS  Google Scholar 

  • Joly JC, Wickner W (1993) The SecA and SecY subunits of translócase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J 12:255–263.

    PubMed  CAS  Google Scholar 

  • Klauser T, Pohler J, Meyer TF (1992) Selective extracellular release of cholera toxin B subunit by Escherichia coli: dissection of Neisseria Igaß-mediated outer membrane transport. EMBO J 11:2327–2335.

    PubMed  CAS  Google Scholar 

  • Koronakis V, Hughes C, Koronakis E (1991) Energetically distinct early and late stages of H1yB/HIyD-dependent secretion across both Escherichia coli membranes. EMBO J 10:3263–3272.

    PubMed  CAS  Google Scholar 

  • Lazar SW, Kolter R (1996) SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178:1770–1773.

    PubMed  CAS  Google Scholar 

  • Lecker SH, Driessen AJM, Wickner W (1990) ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. EMBO J 9:2309–2314.

    PubMed  CAS  Google Scholar 

  • Letellier L, Howard SP, Buckley TJ (1997) Studies on the energetics of proaerolysin secretion across of the outer membrane of Aeromonas spp: evidence for requirement for both the protonmotive force and ATP. J Biol Chem:in press

    Google Scholar 

  • Létoffé S, Delepelaire P, Wandersman C (1996) Protein secretion in Gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J 15:5804–5811.

    PubMed  Google Scholar 

  • Matsuyama S, Fujita Y, Mizushima S (1993) SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. EMBO J 12:265–270.

    PubMed  CAS  Google Scholar 

  • Ménard R, Sansonetti PJ, Parsot C (1994) The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13:5293–5302.

    PubMed  Google Scholar 

  • Missiakis D, Belton J-M, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli: SurA. FkpA and Skp/OmpH. Mol Microbiol 21:871–884

    Article  Google Scholar 

  • Nishiyama K-i, Suzuki T, Tokuda H (1996) Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Parsot C, Ménard R, Gounon P, Sansonetti PJ (1995) Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16:291–300

    Article  PubMed  CAS  Google Scholar 

  • Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746.

    Article  PubMed  CAS  Google Scholar 

  • Possot O, Letellier L, Pugsley AP (1997) Energy requirement for pullulanase secretion by the main terminal branch of the general secretory pathway. Mol Microbiol:in press.

    Google Scholar 

  • Pugsley AP (1989) Protein targeting. Academic Press, San Diego, USA

    Google Scholar 

  • Pugsley AP (1992) Translocation of a folded protein across the outer membrane via the general secretory pathway in Escherichia coli. Proc. Natl. Acad. Sci. USA 89:12058–12062

    Article  PubMed  CAS  Google Scholar 

  • Pugsley AP (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108

    PubMed  CAS  Google Scholar 

  • Pugsley AP, d’Enfert C, Reyss I, Kornacker MG (1990) Genetics of extracellular protein secretion by Gram-negative bacteria. Ann. Rev. Genet. 24:67–90

    Article  PubMed  CAS  Google Scholar 

  • Randall LL, Topping TB, Hardy SJS (1990) No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science 248:860–863.

    Article  PubMed  CAS  Google Scholar 

  • Rosqvist R, Magnusson K-E, Wolf-Watz H (1994) Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972.

    PubMed  CAS  Google Scholar 

  • Schiebel E, Driessen AJM, Hartl F-U, Widmer W (1991) ßµH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:927–939.

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E, Schwartz H, Braun V (1989) Subcellular location and unique secretion of the hemolysin of Serratia marcescens. J Biol Chem 264:16311–16320.

    PubMed  CAS  Google Scholar 

  • Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57:109–137

    PubMed  CAS  Google Scholar 

  • Sory M-P, Boland A, Lambermont I, Cornelis GR (1995) Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages using the cyaA gene fusion approach. Proc Natl Acad Sci USA 92:11998–12002

    Article  PubMed  CAS  Google Scholar 

  • Strom MS, Nunn DN, Lory S (1993) A single bifunctional enzyme, NID, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA 90:2404–2408

    Article  PubMed  CAS  Google Scholar 

  • Valent QA, Kendall DA, High S, Kusters R, Oudega B, Luirink J (1995) Early events in preprotein recognition in E.coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J 14:5494–5505

    PubMed  CAS  Google Scholar 

  • van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lacris. Mol Microbiol 23:1293–1301

    Article  PubMed  Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Article  Google Scholar 

  • Wandersman C (1996) Secretion across the bacterial outer membrane. In: Neidhardt FC, Curtiss HI R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. Cellular and Molecular Biology. ASM Press, Washington D.C., pp 955–966.

    Google Scholar 

  • Watanabe M, Blobel G (1989) SecB functions as a cytosolic signal recognition factor for protein export in E. coli. Cell 58:695–705.

    Article  PubMed  CAS  Google Scholar 

  • Wattiau P, Woestyn S, Cornelis GR (1996) Customized secretion chaperones in pathogenic bacteria. Mol Microbiol 20:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Weiss A, Johnson FD, Burns DL (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci USA 90:2970–2974.

    Article  PubMed  CAS  Google Scholar 

  • Wu SS, Wu J, Kaiser D (1997) The Myxococcus xanthus pilT locus is required for gliding motility although pili are still produced. Mol Microbiol 23:109–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pugsley, A.P. (1998). Protein Traffic in Bacteria. In: Busby, S.J.W., Thomas, C.M., Brown, N.L. (eds) Molecular Microbiology. NATO ASI Series, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72071-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72071-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72073-4

  • Online ISBN: 978-3-642-72071-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics