Recent Advances in Acid-Base Physiology Applied to Critical Care

  • J. A. Kellum
Part of the Yearbook of Intensive Care and Emergency Medicine book series (YEARBOOK, volume 1998)


Unlike most other aspects of critical care medicine, the management of metabolic dysfunction has not seen any major innovations in many years. Although acid-base imbalance is as integral an aspect of sepsis or severe trauma as hemodynamic instability or acute lung injury, the management of acidosis and alkalosis has not evolved as other areas have. There are no analogies in acid-base to norepinephrine and pressure controlled ventilation. However, what is perhaps even more disturbing, and what is, no doubt, behind this stagnation, is that our understanding of the pathophysiology of acid-base disturbances has also failed to keep pace with the advancements in other areas of critical care.


Hydrolysis Albumin Dopamine Lactate Ketone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart PA (1981) How to understand acid-base. In: Stewart PA (ed) A quantitative acid-base primer for biology and medicine. Elsevier, New York, pp 1–286Google Scholar
  2. 2.
    Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61: 1444–1461PubMedCrossRefGoogle Scholar
  3. 3.
    Reeves RB (1983) Commentary on review article by Dr. Peter Stewart. Can J Physiol Pharmacol 61: 1442–1443CrossRefGoogle Scholar
  4. 4.
    Fencl V, Leith DE (1993) Stewart’s quantitative acid base chemistry: Applications in biology and medicine. Resp Physiol 91: 1–16CrossRefGoogle Scholar
  5. 5.
    Figge J,Mydosh T, Fencl V (1992) Serum proteins and acid base equilibria: a follow-up. J Lab Clin Med 120: 713–719Google Scholar
  6. 6.
    Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8: 187–197PubMedCrossRefGoogle Scholar
  7. 7.
    Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: A methodology for exploring unexplained anions. J Crit Care 10: 51–55PubMedCrossRefGoogle Scholar
  8. 8.
    Jones NL (1990) A quantitative physicochemical approach to acid-base physiology. Clin Biochem 23: 189–195PubMedCrossRefGoogle Scholar
  9. 9.
    Schlichtig R (1996) Base Excess: a powerful clinical tool in the ICU. Critical Care Symposium. Society of Critical Care Medicine 1: 1–30Google Scholar
  10. 10.
    Jabor A, Kazda A (1995) Modeling of acid-base equilibria. Acta Anaesth Scand 39 (suppl 107): 119–122CrossRefGoogle Scholar
  11. 11.
    Alfaro V, Torras R, Ibanez J, Palacios L (1996) A physical-chemical analysis of the acid-base response to chronic obstructive pulmonary disease. Can J Physiol Pharmacol 74: 1229–1235PubMedGoogle Scholar
  12. 12.
    Rozenfeld RA, Dishart MK, Tonnessen TI, Schlichtig R (1996) Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by pC02. J Appl Physiol 81: 1834–1842PubMedGoogle Scholar
  13. 13.
    Kellum JA, Bellomo R, Kramer DJ, Pinksy MR (1995) Hepatic anion flux during acute endotoxemia. J Appl Physiol 78: 2212–2217PubMedGoogle Scholar
  14. 14.
    Lindinger MI, Heigenhauser GJF, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 262: R126–R136PubMedGoogle Scholar
  15. 15.
    Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1997) Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care 12: 7–12PubMedCrossRefGoogle Scholar
  16. 16.
    Severinghaus JW (1993) Siggard Andersen and the “great trans-Atlantic acid-base debate”. Scand J Clin Lab Invest 53 (suppl 214): 99–104CrossRefGoogle Scholar
  17. 17.
    Magder S (1997) Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Ronco C, Bellomo R (ed) Critical care nephrology. Kluwer Academic Publishers, Dordrecht, pp 279–296Google Scholar
  18. 18.
    Leblanc M, Kellum JA (1997) Biochemical and biophysical principles of hydrogen ion regulation. In: Ronco C, Bellomo R (eds) Critical care nephrology. Kluwer Academic Publishers, Dordrecht, pp 261–277Google Scholar
  19. 19.
    Cheek DB (1956) Changes in total chloride and acid-base balance in gastroenteritis following treatment with large and small loads of sodium chloride. Pediatrics 17: 839–847PubMedGoogle Scholar
  20. 20.
    Shires GT, Tolman J (1948) Dilutional acidosis. Ann Intern Med 28: 557–559PubMedGoogle Scholar
  21. 21.
    Garella S, Chang BS, Kahn SI (1975) Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8: 279–283PubMedCrossRefGoogle Scholar
  22. 22.
    Garella S, Tzamaloukas AH, Chazan JA (1973) Effect of isotonic volume expansion on extracellular bicarbonate stores in normal dogs. Am J Physiol 225: 628–636PubMedGoogle Scholar
  23. 23.
    Kellum JA, Kramer DJ (1997) Water, electrolyte, and acid-base balance in hepatic cirrhosis. In: Park G, Pinsky MR (ed) Critical care management: Case studies - tricks and traps, W.B. Saunders Company Ltd, London, pp 124–128Google Scholar
  24. 24.
    Mathes DD, Morell RC, Rohr MS (1997) Dilutional acidosis: Is it a real clinical entity? Anesthesiology 86: 501–503PubMedCrossRefGoogle Scholar
  25. 25.
    Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1995) Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Am J Resp Crit Care 151: A318 (Abst)Google Scholar
  26. 26.
    Kellum JA, Kramer DJ, Pinsky MR (1996) Closing the GAP: A simple method of improving the accuracy of the anion gap. Chest 110: 18S (Abst)Google Scholar
  27. 27.
    Zilva JF (1978) The origin of acidosis in hyperlactatemia. Ann Clin Biochem 15: 40–43PubMedGoogle Scholar
  28. 28.
    Levraut J, Ciebiera JP, Jambou P, Ichai C, Labib Y, Grimaud D (1997) Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med 25: 58–62PubMedCrossRefGoogle Scholar
  29. 29.
    Morgera S, Heering P, Szentandrasi T, et al (1997) Comparison of a lactate-versus acetate-based hemofiltration replacement fluid in patients with acute renal failure. Renal Failure 19: 155–164PubMedCrossRefGoogle Scholar
  30. 30.
    Madias NE, Homer SM, Johns CA, Cohen JJ (1984) Hypochloremia as a consequence of anion gap metabolic acidosis. J Lab Clin Med 104: 15–23PubMedGoogle Scholar
  31. 31.
    Bellomo R, Kellum JA, Pinsky MR (1996) Visceral lactate fluxes during early endotoxemia in the dog. Chest 110: 198–204PubMedCrossRefGoogle Scholar
  32. 32.
    Brown, S, Gutierrez G, Clark C, Nelson C, Tiu A (1996) The lung as a source of lactate in sepsis and ARDS. J Crit Care 11: 2–8PubMedCrossRefGoogle Scholar
  33. 33.
    Kellum JA, Kramer DJ, Lee KH, Mankad S, Bellomo R, Pinsky MR (1997) Release of lactate by the lung in acute lung injury. Chest 111: 1301–1305PubMedCrossRefGoogle Scholar
  34. 34.
    Stacpoole PW (1997) Lactic acidosis and other mitochondrial disorders. Metabolism 46: 306–321PubMedCrossRefGoogle Scholar
  35. 35.
    Fink MP (1996) Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med 22: 1144–1146PubMedCrossRefGoogle Scholar
  36. 36.
    Gutierrez G, Wolf ME (1996) Lactic acidosis in sepsis: A commentary. Intensive Care Med 22: 6–16PubMedCrossRefGoogle Scholar
  37. 37.
    Kilpatrick-Smith L, Dean J, Erecinska M, Silver IA (1983) Cellular effects of endotoxin in vitro. II Reversibility of endotoxic damage. Circ Shock 11: 101–111PubMedGoogle Scholar
  38. 38.
    Gore DC, Jahoor F, Hibbert JM, DeMaria EJ (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surgery 224: 97–102CrossRefGoogle Scholar
  39. 39.
    Day NP, Phu NH, Bethell DP, et al (1996) The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet 348: 219–223PubMedCrossRefGoogle Scholar
  40. 40.
    Raper RF, Cameron G, Walker D, Bowey CJ (1997) Type B lactic acidosis following cardiopulmonary bypass. Crit Care Med 25: 46–51PubMedCrossRefGoogle Scholar
  41. 41.
    Salem MM, Mujais SK (1992) Gaps in the anion gap. Arch Intern Med 152: 1625–1629PubMedCrossRefGoogle Scholar
  42. 42.
    Gabow PA (1985) Disorders associated with an altered anion gap. Kidney Int 27: 472–483PubMedCrossRefGoogle Scholar
  43. 43.
    Mecher C, Rackow EC, Astiz ME, Weil MH (1991) Unaccounted anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 19: 705–711PubMedCrossRefGoogle Scholar
  44. 44.
    Kirschbaum B (1997) Increased anion gap after liver transplantation. Am J Med Sei 313: 107–110CrossRefGoogle Scholar
  45. 45.
    Mehta K, Kruse JA, Carlson RW (1986) The relationship between anion gap and elevated lactate. Crit Care Med 14: 405–414CrossRefGoogle Scholar
  46. 46.
    Cohen RD (1979) The production and removal of lactate. Lactate in acute conditions. International Symposium. Karger, Basel, pp 10–19Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. A. Kellum

There are no affiliations available

Personalised recommendations