Abstract
When a small dot is weakly coupled to reservoirs via small tunnel junctions, addition of an extra electron into the dot raises the electrochemical potential of the dot. The one-by-one change of the number of electrons N in the dot leads to a conductance oscillation as a function of a gate voltage (called the Coulomb oscillation or Coulomb blockade oscillation). The oscillation period is usually constant for a system containing many electrons. However, in a small dot containing just a few electrons, both electron-electron interactions and quantum confinement effects become sufficiently strong to cause a significant modification of the Coulomb oscillation [1–3]. Such a system can be regarded as an artificial atom [4]. There have been several experiments on quantum dots containing only a few electrons. These include transport through a two-terminal asymmetric double-barrier tunneling structure [5–8] and through a gated double-barrier tunneling structure [2,3,9–11], and capacitance measurements of a vertically gated modulation-doped heterostructure [1,12]. In this section we describe transport measurements on a sub-micron gated double-barrier structure.
Keywords
- Gate Voltage
- Conductance Oscillation
- Artificial Atom
- Coulomb Oscillation
- Coulomb Diamond
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
R.C. Ashoori, H.L. Stoermer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 71, 613 (1993)
S. Tarucha, D.G. Austing, and T. Honda, Superlattices & Microstructures 18, 121 (1995)
S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996)
M.A. Kastner, Phys. Today 46, 24 (1993)
Bo Su, V.J. Goldman, and J.E. Cunningham, Science 255, 313 (1992)
M. Tewordt, L. Martin-Moreno, J.T. Nicholls, M. Pepper, M.J. Kelly, V.J. Law, D.A. Ritchie, J.E.F. Frost, and G.A.C. Jones, Phys. Rev. B 45, 14407 (1992)
S. Tarucha, T. Honda, T. Saku, and Y. Tokura, Surf. Sci. 305, 547 (1994)
T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. von Klitzing, A. Forester, and H. Lueth, Phys. Rev. B 51, 5570 (1995)
M.W. Dellow, P.H. Beton, M. Henini, P.C. Main, and L. Eaves, Electron. Lett. 27, 134 (1991)
P. Gueret, N. Blanc, R. Germann, and H. Rothuizen, Phys. Rev. Lett. 68, 1896 (1992)
D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci. Technol. 11, 388 (1996)
R.C. Ashoori, Nature (London) 379, 413 (1996)
L.P. Kouwenhoven, R.J. van der Hage, S. Tarucha, D.G. Austing, and T. Honda, unpublished
M. Macucci, K. Hess, and G.J. Iafrate, J. Appl. Phys. 77, 3267 (1995)
H. Tamura, private communications
Y. Tanaka and H. Akera, J. Phys. Soc. Jpn. 66, 15 (1997)
M. Eto, Jpn. J. Appl. Phys. (in press)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Tarucha, S. (1998). Quantum Dots and Artificial Atoms. In: Ando, T., Arakawa, Y., Furuya, K., Komiyama, S., Nakashima, H. (eds) Mesoscopic Physics and Electronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71976-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-71976-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-71978-3
Online ISBN: 978-3-642-71976-9
eBook Packages: Springer Book Archive