Quantum Dots and Artificial Atoms

Part of the NanoScience and Technology book series (NANO)


When a small dot is weakly coupled to reservoirs via small tunnel junctions, addition of an extra electron into the dot raises the electrochemical potential of the dot. The one-by-one change of the number of electrons N in the dot leads to a conductance oscillation as a function of a gate voltage (called the Coulomb oscillation or Coulomb blockade oscillation). The oscillation period is usually constant for a system containing many electrons. However, in a small dot containing just a few electrons, both electron-electron interactions and quantum confinement effects become sufficiently strong to cause a significant modification of the Coulomb oscillation [1–3]. Such a system can be regarded as an artificial atom [4]. There have been several experiments on quantum dots containing only a few electrons. These include transport through a two-terminal asymmetric double-barrier tunneling structure [5–8] and through a gated double-barrier tunneling structure [2,3,9–11], and capacitance measurements of a vertically gated modulation-doped heterostructure [1,12]. In this section we describe transport measurements on a sub-micron gated double-barrier structure.


Gate Voltage Conductance Oscillation Artificial Atom Coulomb Oscillation Coulomb Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Ashoori, H.L. Stoermer, J.S. Weiner, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 71, 613 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Tarucha, D.G. Austing, and T. Honda, Superlattices & Microstructures 18, 121 (1995)CrossRefGoogle Scholar
  3. 3.
    S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, and L.P. Kouwenhoven, Phys. Rev. Lett. 77, 3613 (1996)CrossRefGoogle Scholar
  4. 4.
    M.A. Kastner, Phys. Today 46, 24 (1993)CrossRefGoogle Scholar
  5. 5.
    Bo Su, V.J. Goldman, and J.E. Cunningham, Science 255, 313 (1992)CrossRefGoogle Scholar
  6. 6.
    M. Tewordt, L. Martin-Moreno, J.T. Nicholls, M. Pepper, M.J. Kelly, V.J. Law, D.A. Ritchie, J.E.F. Frost, and G.A.C. Jones, Phys. Rev. B 45, 14407 (1992)CrossRefGoogle Scholar
  7. 7.
    S. Tarucha, T. Honda, T. Saku, and Y. Tokura, Surf. Sci. 305, 547 (1994)CrossRefGoogle Scholar
  8. 8.
    T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. von Klitzing, A. Forester, and H. Lueth, Phys. Rev. B 51, 5570 (1995)CrossRefGoogle Scholar
  9. 9.
    M.W. Dellow, P.H. Beton, M. Henini, P.C. Main, and L. Eaves, Electron. Lett. 27, 134 (1991)CrossRefGoogle Scholar
  10. 10.
    P. Gueret, N. Blanc, R. Germann, and H. Rothuizen, Phys. Rev. Lett. 68, 1896 (1992)CrossRefGoogle Scholar
  11. 11.
    D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci. Technol. 11, 388 (1996)CrossRefGoogle Scholar
  12. 12.
    R.C. Ashoori, Nature (London) 379, 413 (1996)CrossRefGoogle Scholar
  13. 13.
    L.P. Kouwenhoven, R.J. van der Hage, S. Tarucha, D.G. Austing, and T. Honda, unpublishedGoogle Scholar
  14. 14.
    M. Macucci, K. Hess, and G.J. Iafrate, J. Appl. Phys. 77, 3267 (1995)CrossRefGoogle Scholar
  15. 15.
    H. Tamura, private communicationsGoogle Scholar
  16. 16.
    Y. Tanaka and H. Akera, J. Phys. Soc. Jpn. 66, 15 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Eto, Jpn. J. Appl. Phys. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

There are no affiliations available

Personalised recommendations