Skip to main content

Phytoplankton Composition and Biomass Spectra Created by Flow Cytometry and Zooplankton Composition in Mining Lakes of Different States of Acidification

  • Chapter
Acidic Mining Lakes

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

In most aquatic systems, phytoplankton organisms are the most important primary producers. Thus, any alterations in the phytoplankton community have strong effects on the whole system. Apart from the fulfillment of basic requirements such as temperature, dissolved oxygen, ion composition and pH, zooplankton abundance and community structure depend mainly on the amount and usability of phytoplankton as the main source of nutrition. Conversely, effects of zooplankton on the phytoplankton community can be found - feeding types, selection (cell size and shape) and release of nutrients - which can strongly alter phytoplankton abundance and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almer B, Dickson W, Ekstrom C, Hornstrom E, Miller U (1974) Effects of acidification on Swedish lakes. Ambio 4: 30–36

    Google Scholar 

  • Beeler SooHoo JB, Kiefer DA, Collins DJ, McDermid IS (1986) In vivo fluorescence excitation and absorption spectra of marine phytoplankton: I. Taxonomic characteristics and responses to photoadaptation. J Plankton Res 8: 197–214

    Article  Google Scholar 

  • Beisker W (1994) A new combined integral-light and slit-scan data analysis system (DAS) for flow cytometry. Comp Meth Prog Biomed 42: 15–26

    Article  CAS  Google Scholar 

  • Berges JA, Fisher AE, Harrison PJ (1993) A comparison of Lowry, Bradford and Smith protein assays using different standards and protein isolated from the marine diatom Thalassiosira pseudonana. Mar Biol 115: 187–193

    Article  CAS  Google Scholar 

  • Campbell JW, Yentsch CM (1989a) Variance within homogeneous phytoplankton populations, I: theoretical framework for interpreting histograms. Cytometry 10: 587–595

    Article  CAS  Google Scholar 

  • Campbell JW, Yentsch CM (1989b) Variance within homogeneous phytoplankton populations. II. Analysis of clonal cultures. Cytometry 10: 596–604

    Article  CAS  Google Scholar 

  • Campbell JW, Yentsch CM, Cucci TL (1989) Variance within homogeneous phytoplankton populations. III. Analysis of natural populations. Cytometry 10: 605–611

    Article  CAS  Google Scholar 

  • Darzynkiewicz HA, Crissman Z, Tobey RA, Steinkamp JA (1985) Correlated measurements of DNA, RNA, and protein in individual cells by flow cytometry. Science 228: 1321–1324

    Google Scholar 

  • Dillon PJN, Yan D, Harvey HH (1984) Acidic deposition: effects on aquatic ecosystems. CRC Crit Rev Environ Contr 13: 167–194

    Article  CAS  Google Scholar 

  • Echevarria F, Carrillo P, Jimenez F, Sanchez-Castillo P, Cruz-Pizarro L, Rodriguez J (1990) The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (La Caldera, Sierra Nevada, Spain). J Plankton Res 12: 415–422

    Article  Google Scholar 

  • Freeman DA, Crissman HA (1975) Evaluation of six fluorescent protein stains for use in flow microfluorometry. Stain Technol 50: 279–284

    CAS  Google Scholar 

  • Gaedke U (1992) The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol Oceanogr 37: 1202–1220

    Article  Google Scholar 

  • Haney JF, Hall DJ (1973) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18: 331–333

    Article  Google Scholar 

  • Havas M, Hutchinson TC (1983) The Smoking Hills: natural acidification of an aquatic ecosystem. Nature 301: 23–27

    Article  CAS  Google Scholar 

  • Havens KE (1993) Pelagic food web structure in Adirondack Mountain, USA, lakes of varying acidity. Can J Fish Aquat Sci 50: 149–155

    Article  Google Scholar 

  • Kachel V, Hüller R, Glossner G, Burkhill P, Tarran G (1992) Optical and electrical methods for the analysis of single aquatic particles and organisms. Proceedings of the conference: optics within life sciences II, Münster 1992

    Google Scholar 

  • Klapper H, Schultze M (1995) Geogenically acidified mining lakes-living conditions and possibilities of restoration. Int Rev Ges Hydrobiol 80: 639–653

    Article  CAS  Google Scholar 

  • Koste W (1978) Rotatoria, vol 1, 2nd edn. Borntraeger, Berlin

    Google Scholar 

  • Kwiatkowski RE, Roff JC (1976) Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can J Bot 54:2546–2561

    Article  CAS  Google Scholar 

  • Legendre L, Yentsch CM (1989) Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10: 501–510

    Article  CAS  Google Scholar 

  • Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eu- karyotic ultraplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39: 169–174

    Article  CAS  Google Scholar 

  • Maclsaac HJ, Hutchinson TC, Keller W (1987) Analysis of planktonic rotifer assemblages from Sudbury, Ontario, area lakes of varying chemical composition. Can J Fish Aquat Sci 44: 1692–1701

    Article  Google Scholar 

  • McConathy JR, Stahl JB (1982) Rotifera in the plankton and among filamentous algal clumps in 16 acid strip mine lakes. Trans 111 Acad Sci 75: 85–90

    Google Scholar 

  • McMurter HJG, Pick FR (1994) Fluorescence characteristics of a natural assemblage of freshwater picocyanobacteria. J Plankton Res 16: 911–925

    Google Scholar 

  • Müller H (1961) Zur Limnologie der Restgewässer des Braunkohlenbergbaus. Verh Int Ver Limnol 14: 850–854

    Google Scholar 

  • Nilssen JP (1980) Acidification of a small watershed in southern Norway and some characteristics of acidic aquatic environments. Int Rev Ges Hydrobiol 65: 177–207

    Article  CAS  Google Scholar 

  • Ohle W (1981) Photosynthesis and chemistry of an extremely acidic bathing pond in Germany. Verh Int Ver Limnol 21: 1172–1177

    CAS  Google Scholar 

  • Pascher A (1925) Die Süßwasserflora Deutschlands, Österreichs und der Schweiz, Heft 12: Cyanophyceae. Fischer, Jena

    Google Scholar 

  • Phinney DA, Cucci TL (1989) Flow cytometry and phytoplankton. Cytometry 10: 511–521

    Article  CAS  Google Scholar 

  • Platt T (1985) Structure of the marine ecosystem: its allometric basis. Can Bull Fish Aquat Sci 213: 55–64

    Google Scholar 

  • Siegfried C, Bloomfield JA, Sutherland JW (1989) Planktonic rotifer community structure in Adirondack, New York, USA, lakes in relation to acidity, trophic status and related water quality characteristics. Hydrobiologia 175: 33–48

    Article  Google Scholar 

  • Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can J Fish Aquat Sci 43: 1789–1794

    Article  Google Scholar 

  • Steinberg CEW, Geyer HJ, Kettrup AF (1994) Evaluation of xenobiotic effects by ecological techniques. Chemosphere 28: 357–374

    Article  CAS  Google Scholar 

  • Stenson JAE, Svensson JE, Cronberg G (1993) Changes and interactions in the pelagic community in acidified lakes in Sweden. Ambio 22: 277–282

    Google Scholar 

  • Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182: 50–68

    Article  CAS  Google Scholar 

  • Troussellier M, Courties C, Vaquer A (1993) Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell 78: 111–121

    Article  CAS  Google Scholar 

  • Vallin S (1952) Zwei acidotrophe Seen im Küstengebiet von Nordschweden. Rept Inst of Freshwater Research, Drottningholm 39: 167–189

    Google Scholar 

  • Yentsch CS, Phinney DA (1985) Spectral fluorescence: an ataxonomic tool for studying the structure of phytoplankton populations. J Plankton Res 7: 617–632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinberg, C.E.W., Schäfer, H., Tittel, J., Beisker, W. (1998). Phytoplankton Composition and Biomass Spectra Created by Flow Cytometry and Zooplankton Composition in Mining Lakes of Different States of Acidification. In: Geller, W., Klapper, H., Salomons, W. (eds) Acidic Mining Lakes. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71954-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71954-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71956-1

  • Online ISBN: 978-3-642-71954-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics