Skip to main content

Microbial Processes for Potential in Situ Remediation of Acidic Lakes

  • Chapter
Acidic Mining Lakes

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Natural acidification originates, for example, from humic substances which are of significance in a number of water bodies. However, fresh-water systems are anthropogenically polluted by atmospheric acid deposition and even more by mining activity. The water bodies exposed to acid precipitation usually have a pH value in the range of 4–5, whereas acid mine drainage may cause a drop in pH value down to 2. Both types of pollution result in increased concentrations of acidity, sulfate and metals. Nevertheless, there are a number of chemical reactions that can moderate acidification. These include the buffering capacity of the water body as well as ion exchange reactions with colloidal materials. In addition, there are several biological processes with the potential of reducing the acidity of contaminated water bodies. These reactions may temporarily or permanently be responsible for neutralization. The biological reactions which may be of significance are oxygen reduction (photosynthesis), nitrate reduction (denitrification), manganese and iron reduction and sulfate reduction. In addition, there are others having minor or indirect effects, such as amino acid fermentation or methanogenesis. These reduction processes increase alkalinity and thus lead to the neutralization of the water (Mills et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Béchard G, Rajan S, Gould WD (1993) Characterization of a microbiological process for the treatment of acidic drainage. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals and Materials Society, pp. 277–286

    Google Scholar 

  • Bell PE, Herlihy AT, Mills AL (1990) Establishment of anaerobic, reducing conditions in lake sediment after deposition of acidic, aerobic sediment by a major storm. Biogeochemistry 9: 99–116

    Article  CAS  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48: 605–615

    Article  CAS  Google Scholar 

  • Beveridge TJ, Doyle RJ (eds) (1989) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55: 965–978

    Article  CAS  Google Scholar 

  • Brugam RB, Gastineau J, Ratcliff E (1995) The neutralization of acidic coal mining lakes by additions of natural organic matter: a mesocosm test. Hydrobiologia 316: 153–159

    Article  CAS  Google Scholar 

  • Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, Mclnerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe (III)-reducing bacterium. Arch Microbiol 165: 370–376

    Article  CAS  Google Scholar 

  • Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe (III) - reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30: 29–36

    Article  CAS  Google Scholar 

  • Coates JD, Lonergan DJ, Phillips EJP, Jenter H, Lovley DR (1995) Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe (III) reducer that can oxidize long- chain fatty acids. Arch Microbiol 164: 406–413

    Article  CAS  Google Scholar 

  • Coleman ML, Hedrick DB, Lovley DR, White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulfate-reducing bacteria. Nature 361: 436 – 438

    Article  CAS  Google Scholar 

  • Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulfate-containing waste streams. Antonie van Leeuwenhoek 67: 29 – 46

    Article  CAS  Google Scholar 

  • Devereux R, Stahl DA (1992) Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities. In: Odom JM, Singleton R Jr (ed) The sulfate-reducing bacteria: contemporary perspectives. Springer, Berlin Heidelberg New York, pp 131–160

    Google Scholar 

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123–12

    CAS  Google Scholar 

  • Dvorak DH, Hedin RS, Edenborn HM, Mclntire PE (1992) Treatment of metal- contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnol Bioeng 40: 606–616

    Article  Google Scholar 

  • Ehrlich HE (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Fortin D, Davis D, Southam G, Beveridge JT (1995) Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. J Ind Microbiol 14: 178–185

    Article  CAS  Google Scholar 

  • Goodwin S, Zeikus JG (1987) Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl Environ Microbiol 53:57–64

    Google Scholar 

  • Gray KR, Biddlestone AJ (1995) Engineered reed-bed systems for wastewater treatment. Trends Biotechnol 13: 248–252

    Article  CAS  Google Scholar 

  • Gyure RA, Konopka A, Brooks A, Doemel W (1990) Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol Ecol 73: 193–202

    Article  CAS  Google Scholar 

  • Henrot J, Wieder RK (1990) Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. J Environ Qual 19: 312–320

    Article  CAS  Google Scholar 

  • Herlihy AT, Mills AL, Hornberger GM, Bruckner AE (1987) The importance of sediment sulfate reduction to the sulfate budget of an impoundment receiving acid mine drainage. Water Resour Res 23: 287–292

    Article  CAS  Google Scholar 

  • Herlihy AT, Mills AL (1989) Factors controlling the removal of sulfate and acidity from the waters of an acidified lake. Water Air Soil Pollut 45:135 –155

    CAS  Google Scholar 

  • Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847 –856

    Google Scholar 

  • Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57: 207–211

    CAS  Google Scholar 

  • Johnson DB, Ghauri MA, McGinness S (1993) Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol Rev 11: 63–70

    Article  CAS  Google Scholar 

  • Kawaguchi R, Burgess JG, Sakaguchi T, Takeyama H, Thornhill RH, Matsunaga T (1995) Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-i, demonstrates its membership of the δ-Proteobacteria. FEMS Microbiol Lett 126: 277–282

    CAS  Google Scholar 

  • Kelly CA, Rudd JWM, Cook RB, Schindler DW (1982) The potential importance of bacterial processes in regulating rate of lake acidification. Limnol Oceanogr 27: 868–882

    Article  CAS  Google Scholar 

  • Kühl M, Jørgensen BB (1992) Microsensor measurement of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58: 1164–1174

    Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55: 259–287

    CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47: 263–290

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51: 683–689

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54: 1472–1480

    CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159: 336–344

    Article  CAS  Google Scholar 

  • McConathy JR, Stahl JB (1982) Rotifera in the plankton and among filamentous algal clumps in 16 acid strip-mine lakes. Trans Ill State Acad Sci 75:85– 90

    Google Scholar 

  • Mills AL, Bell PE, Herlihy AT (1989) Microbes, sediments, and acidified water: the importance of biological buffering. In: Rao SS (ed) Acid stress and aquatic microbial interactions. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48: 311–343

    Article  CAS  Google Scholar 

  • Nielsen PH (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions. Appl Environ Microbiol 53: 27–32

    CAS  Google Scholar 

  • Ottow JCG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18: 41–43

    CAS  Google Scholar 

  • Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environl Microbiol 59: 734–742

    CAS  Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate- reducing bacteria. Nature 372: 455–458

    Article  CAS  Google Scholar 

  • Schindler DW (1986) The significance of in-lake production of alkalinity. Water Air Soil Pollut 30: 931–944

    Article  CAS  Google Scholar 

  • Sigg L, Stumm W (eds) (1994) Aquatische Chemie. Teubner, Stuttgart

    Google Scholar 

  • Stumm W (ed) (1992) Chemistry of the solid water interface. Wiley, New York

    Google Scholar 

  • Tuttle JH, Dugan R, MacMillan CB, Randies CI (1969 a) Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol 97: 594–602

    CAS  Google Scholar 

  • Tuttle JH, Dugan PR, Randies CI (1969 b) Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl Microbiol 17: 297–302

    CAS  Google Scholar 

  • Vile MA, Wieder RK (1993) Alkalinity generation by Fe ( III) reduction versus sulfate reduction in wetlands constructed for acid mine drainage. Water Air Soil Pollut 69: 425–441

    Article  CAS  Google Scholar 

  • Voordouw G (1995) The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61: 2813–2819

    CAS  Google Scholar 

  • Westermann P (1993) Wetland and swamp microbiology. In: Ford TE (ed) Aquatic microbiology - an ecological approach. Blackwell Scientific, Oxford, pp 215–238

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362: 834–835

    Article  CAS  Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendt-Potthoff, K., Neu, T.R. (1998). Microbial Processes for Potential in Situ Remediation of Acidic Lakes. In: Geller, W., Klapper, H., Salomons, W. (eds) Acidic Mining Lakes. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71954-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71954-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71956-1

  • Online ISBN: 978-3-642-71954-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics