Detecting Bifurcations in Voice Signals

  • Hanspeter Herzel
  • Joachim Holzfuss
  • Zbigniew J. Kowalik
  • Bernd Pompe
  • Robert Reuter


This chapter is concerned with the detection of bifurcations in voice signals applying several techniques of sliding signal analysis — conventional ones as well as novel methods originating from nonlinear dynamics. The signals come from several models (two-mass and continuum) as well as from an excised larynx experiment and vocalizations of patients with voice disorders. The results of the different techniques were found to be consistent and complementary to each other.


Mutual Information Lyapunov Exponent Vocal Fold Pitch Contour Voice Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alipour-Haghighi F., and Titze I.R. (1991): Elastic models of vocal fold tissues. J. Acoust. Soc. Am. 90, 1326–1331ADSCrossRefGoogle Scholar
  2. Alipour-Haghighi F., and Titze I.R. (1995): Combined Simulation of two-dimensional airflow and vocal fold vibration. In Status and Progress Report National Center for Voice and Speech Vol. 8. pp. 9–14Google Scholar
  3. Baer T. (1981): Investigation of the Phonatory Mechanism. ASHA Reports 11, 38–47Google Scholar
  4. Berry D. A., Herzel H., Titze I.R., Krischer K. (1994): Interpretation of biome-chanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J. Acoust. Soc. Am. 95, 3595–3604ADSCrossRefGoogle Scholar
  5. Berry D. A., Herzel H., Titze I.R., Story B. (1996): Bifurcations in excised larynx experiments. J. Voice 10, 129–138CrossRefGoogle Scholar
  6. Dolansky L., Tjernlund P. (1968): On certain irregularities of voiced-speech waveforms. IEEE Trans. AU-16, 51–56Google Scholar
  7. Eckmann J.-P., Kamphorst S., Ruelle D., Ciliberto S. (1986): Liapunov exponents from time series. Phys. Rev. A 34, 4971–4979MathSciNetADSCrossRefGoogle Scholar
  8. Fant G. (1960): Acoustic Theory of Speech Production. Mouton, The HagueGoogle Scholar
  9. Fraser A. M., Swinney H. L. (1986): Using mutual information to find independent coordinates for strange attractors. Phys. Rev. A 33, 1134–1140MathSciNetADSMATHCrossRefGoogle Scholar
  10. Grassberger P., Procaccia I. (1983): Measuring the strangeness of strange attraktors. Physica D 9, 189–208MathSciNetADSMATHCrossRefGoogle Scholar
  11. Hammarberg B., Fritzell B., Gauffin J., Sundberg J. (1986): Acoustic and perceptual analysis of vocal dysfunction. J. of Phonetics 14, 533–547Google Scholar
  12. Herzel H., Ebeling W. (1985): The decay of correlations in chaotic maps. Phys. Lett. A 111, 1–4MathSciNetADSCrossRefGoogle Scholar
  13. Herzel H., Ebeling W., Schulmeister Th. (1985): Nonuniform chaotic dynamics and effects of noise in biochemical systems. Zeitschr. Naturf. 42a, 136–142MathSciNetGoogle Scholar
  14. Herzel H., Pompe B. (1987): Effects of noise on a nonuniform chaotic map. Phys. Lett. A 122, 121–125MathSciNetADSCrossRefGoogle Scholar
  15. Herzel H., Steinecke I., Mende W., Wermke K. (1991): Chaos and bifurcations during voiced speech. In Mosekilde E., Mosekilde L. (1991): Complexity, Chaos and Biological Evolution. Plenum, New York. pp. 41–50Google Scholar
  16. Herzel H., Wendler J. (1991): Evidence of chaos in phonatory samples. In EUROSPEECH ESCA, Genova, 1991, pp. 263–266Google Scholar
  17. Herzel H. (1993): Bifurcations and chaos in voice signals. Appl. Mech. Rev. 46, 399–413ADSCrossRefGoogle Scholar
  18. Herzel H., Berry D.A., Titze I.R., Saleh M. (1994a): Analysis of vocal disorders with methods from nonlinear dynamics. J. Speech Hearing Res. 37, 1008–1019Google Scholar
  19. Herzel H., Schmitt A., Ebeling W. (1994b): Finite sample effects in sequence analysis. Chaos, Solitons, and Fractals 4, 97–113ADSMATHCrossRefGoogle Scholar
  20. Herzel H., Große I. (1995): Measuring correlations in symbolic sequences. Physica A 216, 518–542MathSciNetADSCrossRefGoogle Scholar
  21. Herzel H., Knudsen C. (1995): Bifurcations in a vocal fold model. Nonlinear Dynamics 7, 53–64Google Scholar
  22. Herzel H., Berry D., Titze I., Steinecke I. (1995a): Nonlinear dynamics of the voice: signal analysis and biomechanical modeling. CHAOS 5, 30–34ADSCrossRefGoogle Scholar
  23. Herzel H., Krischer K., Berry D., Titze I.R. (1995b): Analysis of spatio-temporal pattern by means of empirical orthogonal functions. In Cladis P.E., Palffy-Muhoray P. (1995): Spatio-Temporal Patterns in Nonequilibrium Complex Systems Addison-Wesley, Santa Fe. pp. 505–518Google Scholar
  24. Herzel H. (1996): Possible Mechanisms of Vocal Instabilities. In: Davis P. J., Fletcher N. H. (1996): Vocal Fold Physiology: Controlling Complexity & Chaos., Singular Publ. Group, San Diego (in press)Google Scholar
  25. Herzel H., Reuter R. (1996): Biphonation in voice signals. In Katz R. A., Frison T. W., Kadtke J. B., Bulsara A. R. (1996): Nonlinear, Chaotic, and Advanced Signal Processing Methods For Engineers and Scientists. American Institute of Physics, WoodburyGoogle Scholar
  26. Hess M. M., Gross M., Herzel H. (1994): Hochgeschwindigkeitsaufnahmen von Schwingungsmoden der Stimmlippen. Otorhinolaryngologia NOVA 4, 307–312CrossRefGoogle Scholar
  27. Hirano M. ( 1989): Objective evaluation of the human voice: clinical aspects. Folia phoniat. 41, 89–144CrossRefGoogle Scholar
  28. Holzfuss J., Mayer-Kress G. (1986): An approach to error-estimation in the application of dimension algorithms. In Mayer-Kress G. (1986): Dimensions and Entropies in Chaotic Systems. Springer, Berlin, Heidelberg. pp. 114–122CrossRefGoogle Scholar
  29. Holzfuss J., Parlitz U. (1991): Lyapunov exponents from time series. In Arnold L., Crauel H., Eckmann J.-P. (1991): Lyapunov Exponents Lecture Notes in Mathematics, vol. 1486, Springer, Berlin, Heidelberg. pp. 263–270)CrossRefGoogle Scholar
  30. Ishizaka K., Flanagan J. L. (1972): Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell Syst. Techn. J. 51, 1233–1268Google Scholar
  31. Ishizaka K., Isshiki N. (1976): Computer simulation of pathological vocal-cord vibrations. J. Acoust. Soc. Am. 60, 1194–1198ADSGoogle Scholar
  32. Kelman A. W. (1981): Vibratory pattern of the vocal folds. Folia phoniat. 33, 73–99CrossRefGoogle Scholar
  33. Kirsch R. (1995): Statistische Analyse akustischer Signale. Diplomarbeit, Humbolt Universität zu Berlin, BerlinGoogle Scholar
  34. Kowalik Z. J., Elbert T. (1995): A practical method for the measurements of the chaoticity of electric and magnetic brain activity. Int. J. Bif. Chaos 5, 475–490MATHCrossRefGoogle Scholar
  35. Kurths J., Herzel H. (1987): An attractor in a solar time series. Physica D 25, 165–172ADSMATHCrossRefGoogle Scholar
  36. Landa P.S. (1996): Nonlinear oscillations and waves in dynamical systems. Kluwer, AmsterdamMATHGoogle Scholar
  37. Lauterborn W., Cramer E. (1981): Subharmonic routes to chaos observed in acoustics. Phys. Rev. Lett. 47, 1445–1448ADSCrossRefGoogle Scholar
  38. Lauterborn W., Holzfuss J. (1986): Evidence for a low-dimensional strange attractor in acoustic turbulence. Phys. Lett. A 115, 369–372MathSciNetADSCrossRefGoogle Scholar
  39. Liauw M. A., Koblitz K., Jaeger N. I., Plath P. (1993): Periodic perturbation of a drifting heterogeneous catalytic system. J. Phys. Chem. 97, 11724–11730CrossRefGoogle Scholar
  40. Lind J. (Ed.) (1965): Newborn Infant Cry. Almquist and Wiksells Boktrycken, UppsalaGoogle Scholar
  41. Mazo M. (1994): Lament made visible: a study of paramusical elements in russian lament. In Yung B., Lam J.S.C. (1994): Themes and Variations. Harvard University, Cambridge. pp. 164–211Google Scholar
  42. Mende W., Herzel H., and Wermke K. (1990): Bifurcations and chaos in newborn cries. Phys. Lett. A 145, 418–424ADSCrossRefGoogle Scholar
  43. Merbach D., Hess O., Herzel H., Schöll E. (1995): Injection-induced bifurcations of transverse spatio-temporal patterns in semiconductor laser arrays. Phys. Rev. E 52, 1571–1578ADSCrossRefGoogle Scholar
  44. Pelorson X., Hirschberg A., van Hassel R., Wijnands A., Auregan Y. (1994): Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model. J. Acoust. Soc. Am. 96, 3416–3431ADSCrossRefGoogle Scholar
  45. Pompe B., Leven R.W. (1986): Transinformation of chaotic systems. Physica Scripta 34, 8–13MathSciNetADSMATHCrossRefGoogle Scholar
  46. Pompe B. (1993): Measuring Statistical Dependencies in a Time Series. J. Stat. Phys. 73, 587–610MathSciNetADSMATHCrossRefGoogle Scholar
  47. Pompe B., Heilfort M. (1994): Miogram for short-time signal analysis with an application to speech. In Gruber R., Tomassini M. (1994): Proc. 6. Joint EPSAPS Int. Conf. on Physics Computing. European Physical Society, Boite Postale 69, CH-1213 Petit-Lancy 2, Geneva, Switzerland.Google Scholar
  48. Rényi A. (1970): Probability Theory. North-Holland, AmsterdamGoogle Scholar
  49. Sano M., Sawada Y. (1985): Measurement of the lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55, 1082–1085MathSciNetADSCrossRefGoogle Scholar
  50. Scherer R. (1989): Physiology of creaky voice and vocal fry. J. Acoust. Soc. Am. 86,(S1), S25 (A)ADSCrossRefGoogle Scholar
  51. Smith M. E., Berke G. S., Gerrat B. R., Kreimann J. (1992): Laryngeal paralyses: theoretical considerations and effects on laryngeal vibration. J. Speech Hear. Res. 35, 545–554Google Scholar
  52. Steinecke I., Herzel H. (1995): Bifurcations in an asymmetric vocal fold model. J. Acoust. Soc. Am. 97, 1874–1884ADSCrossRefGoogle Scholar
  53. Titze I. R. (1973): The human vocal cords: a mathematical model, part I. Phonetica 28, 129–170CrossRefGoogle Scholar
  54. Titze I. R., Talkin D. T. (1979): A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation. J. Acoust. Soc. Am. 66, 60–74ADSCrossRefGoogle Scholar
  55. Titze I.R., Baken R., Herzel H. (1993): Evidence of chaos in vocal fold vibration. In Titze I.R. (ed.) (1993): Vocal Fold Physiology: Frontiers in Basic Science. Singular Publishing Group, San Diego. pp. 143–188)Google Scholar
  56. Titze I.R., Alipour-Haghighi F. (forthcoming book): Myoelastic Aerodynamic Theory of Phonation Google Scholar
  57. van den Berg J. (1958): Myoelastic-aerodynamic theory of voice production. J. Speech Hearing Res. 1, 227–244Google Scholar
  58. Wolf A., Swift J., Swinney H., Vastano J. (1985): Determining lyapunov exponents from a time series. Physica D 16, 285–317MathSciNetADSMATHCrossRefGoogle Scholar
  59. Wolff R. C.L. (1992): Local lyapunov exponents: looking closely at chaos. J. R. Stat. Soc. B 54, 353–371MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Hanspeter Herzel
    • 1
  • Joachim Holzfuss
    • 2
  • Zbigniew J. Kowalik
    • 3
  • Bernd Pompe
    • 4
  • Robert Reuter
    • 5
  1. 1.Institute of Theoretical BiologyHumboldt University BerlinBerlinGermany
  2. 2.Institut für Angewandte PhysikTechnische Hochschule DarmstadtDarmstadtGermany
  3. 3.Institute of Experimental AudiologyUniversity of MünsterMünsterGermany
  4. 4.Institute of PhysicsE.-M.-Arndt-University GreifswaldGreifswaldGermany
  5. 5.Institute of ElectronicsTechnical University BerlinBerlinGermany

Personalised recommendations