Small Fluctuations from the Homogeneous Steady State

  • Eckehard Schöll
Part of the Springer Series in Synergetics book series (SSSYN, volume 35)


In this chapter we analyze the response to small spatial and temporal fluctuations of the homogeneous steady state. We shall show that under certain conditions, in particular when negative differential conductivity occurs, these fluctuations can grow and lead to the bifurcation of filamentary or domain-like spatial structures or self-sustained oscillations. We show that a variety of electromagnetic modes can exist, depending upon the orientation of the field fluctuation and the wave vector relative to the uniform field. Only some of these modes couple to the g-r instability and are associated with the bifurcation of spatial or temporal dissipative structures. Whether a current filament or an electric-field domain bifurcates, depends upon the details of the uniform current density-field characteristic. In particular, we point out a novel possibility of moving domains associated with an anomalous tilted S-shaped characteristic. Analytical conditions for the Hopf bifurcation of limit-cycle oscillations are also derived. The analysis in this chapter is confined to single-carrier g-r mechanisms, as discussed in Sect. 2.1.


Hopf Bifurcation Field Fluctuation Electromagnetic Mode Differential Conductivity Domain Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 3

General Analysis of Linear Modes in NDC Elements (for specific examples see, e.g. [1.2, 3, 62])

  1. 1.
    B.K. Ridley: Proc. Phys. Soc. 82, 954 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    H. Thomas: Lecture Notes, Conf. on Fluctuation Phenomena, Chania, Crete (1969)Google Scholar
  3. 3.
    H. Thomas: In Synergetics ,ed. by H. Haken (Teubner, Stuttgart 1973) p. 87Google Scholar
  4. 4.
    H. Thomas: “Current Instabilities”;, in Cooperative Effects ,ed. by H. Haken (North Holland, Amsterdam 1974) p. 171Google Scholar
  5. 5.
    V.L. Bonch-Bruevich, LP. Zvyagin, A.G. Mironov: Domain Electrical Instabilities in Semiconductors (Consultant Bureau, New York 1975)Google Scholar

Linear Modes of One-Carrier g-r Mechanisms

  1. 6.
    E. Schöll: Festkörperprobleme 26, 309 (Vieweg, Braunschweig 1986)Google Scholar
  2. 7.
    E. Schöll: Z. Phys. B48,153 (1982)ADSCrossRefGoogle Scholar

Generalized Shockley-Read-Hall-Kinetics

  1. 8.
    D.A. Evans: In Solid State Theory ,ed. by P.T. Landsberg (Wiley, London 1969)Google Scholar

Anomalous Tilted SNDC Characteristics:Poole-Frenkel Tunneling

  1. 9.
    A.A. Sukhanov: Sov. Phys. Semiconductors 5,1160 (1972)Google Scholar

Sasaki Effect in Many-Valley Semiconductors

  1. 10.
    Z.S. Gribnikov, V.A. Kochelap, V.V. Mitin: Sov. Phys. JETP 32,991 (1971); see [1.33,§26, Fig. 33]ADSGoogle Scholar

Nerve-Axon Excitations in Neurobiology

  1. 11.
    S. Thiesen: Thesis RWTH Aachen (1983); submitted to Physica DGoogle Scholar

Bessel Functions

  1. 12.
    E. Jahnke, F. Emde, F. Lösch: Tables of Higher Functions (Teubner, Stuttgart 1960)zbMATHGoogle Scholar

Continuous Bifurcation in Reaction-Diffusion Systems

  1. 13.
    K. Kirchgässner: In Synergetics ,A Workshop, ed. by H. Haken, Springer Ser. Syn., Vol. 2 (Springer, Berlin, Heidelberg 1977) p. 34Google Scholar
  2. 14.
    M. Büttiker, H. Thomas: Phys. Rev. A24, 2635 (1981)ADSGoogle Scholar

Bifurcation of Current Filaments in Thermally Induced SNDC

  1. 15.
    H. Lueder, W. Sehottky, E. Spenke: Naturwiss. 24,61 (1936)ADSCrossRefGoogle Scholar

Moving Gunn Domains in NNDC Elements

  1. 16.
    M.P. Shaw, P.R. Solomon, H.L. Grubin: IBM J. Res. Develop. 13, 587 (1969)CrossRefGoogle Scholar
  2. 17.
    P.R. Solomon, M.P. Shaw, H.L. Grubin, R. Kaul: IEEE Trans. ED-22,127 (1975)Google Scholar

Competing Interaction of Filaments and Domains

  1. 18.
    C.L. Dick, B. Ancker-Johnson: Phys. Rev. B5, 526 (1972)ADSGoogle Scholar

Linear Mode Analysis of SNDC Elements

  1. 19.
    M.P. Shaw, H.L. Grubin, I.J. Gastman: IEEE Trans. ED-20,169 (1973)Google Scholar
  2. 20.
    F.G. Bass, Yu.G. Gurevich, S.A. Kostylev, N.A. Terenf’eva: Sov. Phys. Semicond. 17,808 (1983)Google Scholar

Oscillatory Instability in a 2-Level g-r Mechanism

  1. 21.
    E. Schöll: Physica 134B, 271 (1985)Google Scholar

Relaxation Semiconductors

  1. 22.
    W. van Roosbroeck: Phys. Rev. 119, 636 (1960)ADSzbMATHCrossRefGoogle Scholar

Bifurcation of Travelling and Standing Waves in Two-Component Reaction-Diffusion Systems

  1. 23.
    S. Thiesen, H. Thomas: Z. Phys. B 65, 397 (1987)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische PhysikRheinisch-Westfälische Technische HochschuleAachenFed. Rep. of Germany

Personalised recommendations