Bistability of Homogeneous Steady States

  • Eckehard Schöll
Part of the Springer Series in Synergetics book series (SSSYN, volume 35)


In this chapter we will elaborate a variety of g-r mechanisms that give rise to three spatially homogeneous steady states (two of which are stable) in a certain range of applied electric fields and material parameters. This results in S-shaped current density-field relations (SNDC), and in various nonequilibrium phase transitions of first and of second order between the different steady states. Impact ionization turns out to be a key process for these phenomena. The connection with threshold switching and — in the case of exciton g-r kinetics — optical bistability is pointed out.


Impact Ionization Landau Level Critical Line Auger Recombination Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2

Review and Classification of g-r Processes

  1. 1.
    E. Schöll: Proc. Roy. Soc. A365, 511–21 (1979)ADSGoogle Scholar
  2. 2 .
    P.T. Landsberg, M.J. Adams: J.Lum. 7, 3 (1973)ADSCrossRefGoogle Scholar

One-Carrier Models for SNDC

  1. 3 .
    R.S. Crandall: J. Phys. Chem. Solids 31, 2069 (1970)ADSCrossRefGoogle Scholar
  2. 3a.
    R.S. Crandall: J. Phys. Chem. Solids Phys. Rev. Bl, 730 (1970)Google Scholar
  3. 4.
    A.A. Kastalskij: Phys. Status Solidi (a) 15, 599 (1973)ADSCrossRefGoogle Scholar
  4. 5.
    A.G. Zabrodskij, I.S. Shlimak: Sov. Phys. Solid State 16,1528 (1975)Google Scholar
  5. 6.
    W. Pickin: Solid State Electr. 21, 309,1299 (1978)ADSCrossRefGoogle Scholar
  6. 7.
    E. Schöll, P.T. Landsberg: Proc. 14th Int. Conf. Physics of Semiconductors (Edinburgh 1978), ed. by B.L.H. Wilson, Inst. Phys. Conf. Ser. 43,461 (Institute of Physics, Bristol 1979)Google Scholar
  7. 8.
    E. Schöll, P.T. Landsberg: Proc. R. Soc. (London) Ser. A365, 495 (1979)ADSCrossRefGoogle Scholar
  8. 9.
    E. Schöll: Proc. 3rd Int’l. Conf. on Hot Carriers in Semiconductors (Montpellier 1981), J. Physique C7, 57 (1981)Google Scholar
  9. 10.
    E. Schöll: Z. Phys. B46, 23 (1982)ADSCrossRefGoogle Scholar
  10. 11.
    E. Schöll, W. Heisel, W. Prettl: Z. Phys. B47, 285–291 (1982)ADSCrossRefGoogle Scholar
  11. 12.
    W.G. Proctor, P. Lawaetz, Y. Marfaing, R. Triboulet: Phys. Status Solidi (b) 110, 637 (1982)ADSCrossRefGoogle Scholar
  12. 13.
    E. Schöll: Z. Phys. B52, 321 (1983)ADSCrossRefGoogle Scholar

Impurity Breakdown in Semiconductors

  1. 14.
    S.H. Koenig, R.D. Brown, W. Schillinger: Phys. Rev. 128,1668 (1962)ADSCrossRefGoogle Scholar
  2. 15.
    M.E. Cohen, P.T. Landsberg: Phys. Rev. 154, 683 (1972)ADSCrossRefGoogle Scholar
  3. 16.
    A.E. McCombs, A.G. Milnes: Int. J. Electron. 32, 361 (1972)CrossRefGoogle Scholar

g-r Kinetics of F Centers in Alkali Halogenides

  1. 17.
    F. Lüty: Halbleiterprobleme 6,238 (1961)Google Scholar
  2. 18.
    HJ. Hoffmann: Phys. Status Solidi (b) 57,123 (1973)ADSCrossRefGoogle Scholar
  3. 19.
    H. Stumpf: Quantum Processes in Polar Semiconductors and Insulators (Vieweg, Braunschweig 1983)Google Scholar
  4. 20.
    R. Swank, F. Brown: Phys. Rev. 130, 34 (1963)ADSCrossRefGoogle Scholar
  5. 21.
    F. De Martini, U.M. Grassano, F. Simoni: Opt. Commun. 11, 8 (1974)ADSCrossRefGoogle Scholar

Nonexistence Theorem for Limit Cycles

  1. 22.
    P. Hanusse: C.R. Acad. Sci. C274,1245 (1972)Google Scholar
  2. 23.
    J.J. Tyson, L.C. Light; J. Chem. Phys. 59, 4164 (1973)ADSCrossRefGoogle Scholar

Experiments on SNDC Induced by Impurity Impact Ionization:Ge

  1. 24.
    N. Sclar, E. Burstein: J. Phys. Chem. Solids 2,1 (1957)ADSCrossRefGoogle Scholar
  2. 25.
    A.L. McWhorter, R.H. Rediker: Proc. Inst. Radio Engrs. 47,1207 (1959)Google Scholar
  3. 26.
    I. Melngailis, A.G. Milnes: J. Appl. Phys. 33, 995 (1962)ADSCrossRefGoogle Scholar
  4. 27.
    A. Zylbersztejn: J. Phys. Chem. Solids 23, 297 (1962)ADSCrossRefGoogle Scholar
  5. 28.
    F. Brown, D. Parker, J. Heyman, N. Newbury: Appl. Phys. Lett. 49,1548 (1986)ADSCrossRefGoogle Scholar


  1. 29.
    PJ. Oliver: Phys. Rev. 127,1045 (1962)ADSCrossRefGoogle Scholar
  2. 30.
    R.A. Reynolds: Solid State El. 11, 385 (1968)ADSCrossRefGoogle Scholar
  3. 31.
    T.O. Poehler: Phys. Rev. B4,1223 (1971)ADSGoogle Scholar
  4. 32.
    G.E. Stillman, C.M. Wolfe, J.O. Dimmock: Semiconductors and Semimetals 12, 169 (Academic, New York 1977)Google Scholar
  5. 33.
    W. Heisel, W. Böhm, W. Prettl: Int. J. Infrared Millim: 2, 829 (1981)ADSCrossRefGoogle Scholar


  1. 34.
    R.P. Khosla, J.R. Fischer, B.C. Burkey: Phys. Rev. B7, 2551 (1973)ADSGoogle Scholar


  1. 35.
    N.V. Agrinskaya, M.V. Alekseenko, O.A. Matveev: Sov. Phys. Semicond. 9, 341,1286 (1976)Google Scholar


  1. 36.
    E.H. Putley: Semiconductors and Semimetals 1, 289 (Academic, New York 1966)Google Scholar

Space Charge Limited Currents

  1. 37.
    M.A. Lampert, P. Mark: Current Injection in Solids (Academic, New York 1970)Google Scholar

Tricritical Behaviour in Equilibrium

  1. 38.
    R.B. Griffiths: Phys. Rev. Lett. 24, 715 (1970)ADSCrossRefGoogle Scholar
  2. 39.
    R.B. Griffiths: Phys. Rev. B7, 545 (1973)ADSGoogle Scholar
  3. 40.
    E.G.D. Cohen: In Fundamental Problems in Statistical Mechanics ,Vol. III, ed. by E.G.D. Cohen (North Holland, Amsterdam 1975) p. 47Google Scholar

Critical Behaviour in Equilibrium (see also [1.104])

  1. 41.
    R.B. Griffiths, J.C. Wheeler: Phys. Rev. A2,1047 (1970)ADSGoogle Scholar

Critical Behaviour of Bit-Number Variance (see also [1.106])

  1. 42.
    F. Schlögl: Z. Phys. B52, 51 (1983)ADSCrossRefGoogle Scholar
  2. 43.
    E. Schöll, unpublishedGoogle Scholar

Nonlinear FIR Magneto-Photoconductivity and -Absorption in n-GaAs

  1. 44.
    C.R. Pidgeon, A. Vass, G.R. Allan, W. Prettl, L. Eaves: Phys. Rev. Lett. 50,1309 (1983)ADSCrossRefGoogle Scholar
  2. 45.
    W. Prettl, A. Vass, G.R. Allan, C.R. Pidgeon: Int. J. Infrared Millim. Waves 4, 561 (1983)ADSCrossRefGoogle Scholar

Cyclotron Resonance Induced Nonequilibrium Phase Transitions in n-GaAs

  1. 46.
    R. Obermaier, W. Böhm, W. Prettl, P. Dirnhofer: Phys. Lett. 105A, 149 (1984)ADSGoogle Scholar
  2. 47.
    M. Weispfenning, I. Hoeser, W. Böhm, W. Prettl, E. Schöll: Phys. Rev. Lett. 55, 754 (1985)ADSCrossRefGoogle Scholar

Mobility of n-GaAs Under Cyclotron Resonance Absorption

  1. 48.
    H.J.A. Bluyssen, I.C. Maan, T.B. Tan, P. Wyder: Phys. Rev. B22, 749 (1980)ADSGoogle Scholar

Two-Carrier Model for Second-Order Phase Transitions

  1. 49.
    P.T. Landsberg, A. Pimpale: J. Phys. C9,1243 (1976)ADSGoogle Scholar
  2. 50.
    A. Pimpale, P.T. Landsberg: J. Phys. C10,1447 (1977)ADSGoogle Scholar

Two-Carrier Models for NDC and Threshold Switching

  1. 51.
    D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky: J. Appl. Phys. 51, 3289 (1980)ADSCrossRefGoogle Scholar
  2. 52.
    N. Klein, P. Solomon: J. Appl. Phys. 47,4364 (1976)ADSCrossRefGoogle Scholar
  3. 53.
    I. Kashat, N. Klein: J. Appl. Phys. 48, 5217 (1977)ADSCrossRefGoogle Scholar
  4. 54.
    N. Klein: J. Appl. Phys. 53, 5828 (1982)ADSCrossRefGoogle Scholar

Two-Carrier Models for SNDC and Threshold Switching (see also [2.7, 8])

  1. 55.
    P.T. Landsberg, DJ. Robbins, E. Schöll: Phys. Status Solidi (a) 50,423–6 (1978)ADSCrossRefGoogle Scholar
  2. 56.
    D.J. Robbins, P.T. Landsberg, E. Schöll: Phys. Status Solidi (a) 65, 353–64 (1981)ADSCrossRefGoogle Scholar

Experimental Data on Trapping Cross Sections

  1. 57.
    V.L. Bonch-Bruevich, E.G. Landsberg: Phys. Status Solidi 29, 9 (1968)CrossRefGoogle Scholar

Reviews on Threshold Switching (in particular, in amorphous thin films)

  1. 58.
    D. Adler: Amorphous Semiconductors (CRC Press, Cleveland 1971), Chap. VIIGoogle Scholar
  2. 59.
    H. Fritzsche: In Amorphous and Liquid Semiconductors ,ed. by J. Tauc (Plenum, New York 1974) Chap. 6Google Scholar
  3. 60.
    D. Adler, H.K. Henisch, N.F. Mott: Rev. Mod. Phys. 50, 209 (1978)ADSCrossRefGoogle Scholar
  4. 61.
    R. Landauer, J.W.F. Woo: Comments on Sol. State Phys. 4,139 (1972) (thermal switching)Google Scholar
  5. 62.
    M.P. Shaw, N. Yildirim: Adv. Electr. Electron Phys. 60, 307 (1983)Google Scholar

Threshold Switching in Crystalline Solids, Organic Films, Liquids (see also [2.5, 35])

  1. 63.
    A. Szymanski, D.C. Larson, M.M. Labes: Appl. Phys. Lett. 14, 88 (1969)ADSCrossRefGoogle Scholar


  1. 64.
    V.K. Zaitsev, O.A. Golikova, M.M. Kazanin, V.M. Orlov, E.N. Tkalenko: Soviet Phys. -Semicond. 9,1372 (1976)Google Scholar
  2. 65.
    A.I. Popov, I.K. Geller, V.K. Shemetova: Phys. Status Solidi (a) 44, K71 (1977)ADSCrossRefGoogle Scholar

Threshold Switching in Amorphous Semiconductors (mainly experimental) (see also [2.51])

  1. 66.
    S.R. Ovshinsky: Phys. Rev. Lett. 21,1450 (1968)ADSCrossRefGoogle Scholar
  2. 67.
    H.J. Stocker, C.A. Barlow, jr., D.F. Weirauch: J. Non-Cryst. Solids 4, 523 (1970)ADSCrossRefGoogle Scholar
  3. 68.
    M.P. Shaw, S.H. Holmberg, S.A. Kostylev: Phys. Rev. Lett. 31, 542 (1973)ADSCrossRefGoogle Scholar
  4. 69.
    M.P. Shaw, S.C. Moss, S.A. Kostylev, L.H. Slack: Appl. Phys. Lett. 22,114 (1973)ADSCrossRefGoogle Scholar
  5. 70.
    D. Adler: J. Vacuum Sci. Technol. 10, 728 (1973)ADSCrossRefGoogle Scholar
  6. 71.
    S.M. Rivkin, I.S. Shlimak: In Amorphous and Liquid Semiconductors ,ed. by J. Stuke and W. Brenig (Taylor Francis, London 1974) p. 1155Google Scholar
  7. 72.
    P.J. Walsh, G.C. Vezzoli: In Amorphous and Liquid Semiconductors ,ed. by J. Stuke and W. Brenig (Taylor Francis, London 1974) p. 1391Google Scholar
  8. 73.
    K.E. Petersen, D. Adler: J. Appl. Phys. 47, 256 (1976)ADSCrossRefGoogle Scholar
  9. 74.
    D. Adler: Proc. 7th Int’l. Conf. on Amorphous and Liquid Semiconductors (Edinburgh 1977) p. 695Google Scholar
  10. 75.
    D.K. Reinhard: Appl. Phys. Lett. 31, 52 (1977)CrossRefGoogle Scholar
  11. 76.
    M.P. Shaw: IEEE Trans. ED-26,1766 (1979)Google Scholar
  12. 77.
    Ch. Chiang: Phys. Status Solidi (a) 54, 735 (1979)ADSCrossRefGoogle Scholar
  13. 78.
    M.P. Shaw, K.F. Subhani: Solid State Electr. 24,233 (1981)ADSCrossRefGoogle Scholar
  14. 79.
    J. Kotz, M.P. Shaw: J. Appl. Phys. 55,427 (1984)ADSCrossRefGoogle Scholar

Reviews on Breakdown in Insulators (in particular SiO2) (see also [1.1])

  1. 80.
    N. Klein: Adv. Electron. Electron Phys. 26, 309 (1969)CrossRefGoogle Scholar
  2. 81.
    J.J. O’Dwyer: The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Clarendon, Oxford 1973)Google Scholar
  3. 82.
    L. Altcheh, N. Klein: IEEE Trans. ED-20, 801 (1973)Google Scholar
  4. 83.
    P. Solomon: J. Vac. Sci. Technol. 14,1122 (1977)ADSCrossRefGoogle Scholar
  5. 84.
    N. Klein: Thin Solid Films 50, 223 (1978); 100, 335 (1983)ADSCrossRefGoogle Scholar

Switching and Delay Times (experimental)

  1. 85.
    H.K. Charles jr., C. Feldman: J. Appl. Phys. 46, 819 (1975)ADSCrossRefGoogle Scholar
  2. 85a.
    N.P. Kalmykova, B.T. Kolomiets, E.A. Smorgonskaya, V.Kh. Shpunt: Sov. Phys. Semicond. 14, 1280 (1980)Google Scholar
  3. 85b.
    G.C. Vezzoli, L.W. Doremus, S. Levy, G.K. Gaulé, B. Lalevic, M. Shoga: J. Appl. Phys. 52, 833 (1981)ADSCrossRefGoogle Scholar

Delay Time Statistics in Superfluorescence

  1. 86.
    F. Haake, J.W. Haus, H. King, G. Schroder, R. Glauber: Phys. Rev. Lett. 45, 558 (1980); Phys. Rev. A23,1322(1981)ADSCrossRefGoogle Scholar
  2. 87.
    F. Haake, J.W. Haus, R. Glauber: Phys. Rev. A23, 3255 (1981)MathSciNetADSGoogle Scholar

Auger-Recombination Induced Tristability

  1. 88.
    E. Schöll: Verh. DPG 3, 364 (1980)Google Scholar
  2. 88a.
    Lecture Notes VI. Sitges Conference on Systems Far From Equilibrium, Sitges/Spain, June 1980 (unpublished)Google Scholar

Reviews on Excitons and Electron-Hole Droplet Condensation

  1. 89.
    H. Haken, S. Nikitine (eds.): Excitons at High Density ,Springer Tracts Mod. Phys., Vol. 73 (Springer, Berlin, Heidelberg 1975)Google Scholar
  2. 90.
    E. Hanamura, H. Haug: Phys. Repts. C33, 209 (1977)ADSCrossRefGoogle Scholar
  3. 91.
    T.M. Rice: Sol. State Phys. 32,1 (1977)CrossRefGoogle Scholar
  4. 92.
    J.C. Hensel, T.G. Phillips, G.A. Thomas: Sol. State Phys. 32, 87 (1977)CrossRefGoogle Scholar
  5. 93.
    E.O. Göbel, G. Mahler: Festkörperprobleme 19,105 (Vieweg, Braunschweig 1979)Google Scholar
  6. 94.
    K. Cho (ed.): Excitons (Springer, Berlin, Heidelberg 1979)Google Scholar
  7. 95.
    C.D. Jeffries, L.V. Keldysh (eds.): Electron-Hole Droplets in Semiconductors (North Holland, Amsterdam 1983)Google Scholar

Exciton g-r Kinetics

  1. 96.
    EX. Nolle: Sov. Phys. - Solid State 9, 90 (1967)Google Scholar
  2. 97.
    C. Benoit à la Guillaume, J.M. Debever, F. Salvan: Phys. Rev. 177, 567 (1969)ADSCrossRefGoogle Scholar
  3. 98.
    H.B. Bebb, E.W. Williams: Semicond. and Semimetals 8,181 (Academic, New York 1972)Google Scholar
  4. 99.
    T.K. Lo: Ph.D. Thesis (University of California, 1974)Google Scholar
  5. 100.
    H. Haug, P. Mengel: J. Lum. 12/13, 629 (1976)ADSCrossRefGoogle Scholar
  6. 101.
    H. Stemheim, E. Cohen: Solid State Electr. 21,1343 (1978)ADSCrossRefGoogle Scholar
  7. 102.
    G.C. Osbourn, S.A. Lyon, K.R. Elliott, D.L. Smith, T.C. McGill: Solid State Electr. 21,1339 (1978)ADSCrossRefGoogle Scholar
  8. 103.
    W. Klingenstein, W. Schmid: Phys. Rev. B20, 3285 (1979)ADSGoogle Scholar
  9. 104.
    K. Aoki, T. Kobayashi, K. Yamamoto: Phys. Lett. 79A, 445 (1980) (GaAs)ADSGoogle Scholar
  10. 105.
    M. Ganser, M. Seelmann-Eggebert, R.P. Huebener: Phys. Status Solidi (b) 111, 131 (1982)ADSCrossRefGoogle Scholar
  11. 106.
    Ch. Nöldeke, W. Metzger, R.P. Huebener, H. Schneider: Phys. Status Solidi (b) 129, 224 (1985) (Ge)CrossRefGoogle Scholar

Excitonic Mechanism for Limit-Cycle Oscillations

  1. 107.
    A. Pimpale, P.T. Landsberg, L.L. Bonilla, M.G. Velarde: J. Phys. Chem. Solids 42, 873 (1981)ADSCrossRefGoogle Scholar

Excitonic Mechanisms for Bistability

  1. 108.
    E. Schöll, unpublishedGoogle Scholar

Theory of Electron-Hole Droplet Formation

  1. 109.
    S.W. Koch: Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems ,Lecture Notes Phys., Vol. 207 (Springer, Berlin, Heidelberg 1984)Google Scholar

Reviews on Optical Bistability in Semiconductors

  1. 110.
    D.A.B. Miller, S.D. Smith, C.T. Seaton: IEEE J. QE-17, 312 (1981)CrossRefGoogle Scholar
  2. 111.
    E. Abraham, S.D. Smith: J. Phys. E15, 33 (1982)ADSGoogle Scholar
  3. 112.
    H. Haug: Festkörperprobleme 22, 149 (Vieweg, Braunschweig 1982)Google Scholar
  4. 113.
    M.H. Pilkuhn (ed.): High Excitation and Short Pulse Phenomena (North Holland, Amsterdam 1985)Google Scholar
  5. 113a.
    H.M. Gibbs, P. Mandel, N. Peyghambarian, S.D. Smith (eds.): Optical Bistability III ,Springer Proc. in Physics, Vol. 8 (Springer, Berlin, Heidelberg 1986)Google Scholar

Optical Bistability Involving Excitons

  1. 114.
    H.M. Gibbs, A.C. Gossard, S.L. McCall, A. Passner, W. Wiegmann, T.N.C. Venkatesan: Sol. State Commun. 30,271 (1979) (GaAs)ADSCrossRefGoogle Scholar
  2. 115.
    J. Goll, H. Haken: Phys. Status Solidi (b) 101, 489 (1980)MathSciNetADSCrossRefGoogle Scholar
  3. 116.
    N. Peyghambarian, H.M. Gibbs, M.C. Rushford, D.A. Weinberger: Phys. Rev. Lett. 51, 1692 (1983) (CuCl)ADSCrossRefGoogle Scholar
  4. 117.
    M. Dagenais, H.G. Winful: Appl. Phys. Lett. 44, 574 (1984) (Cd)ADSCrossRefGoogle Scholar

Optical Bistability in InSb

  1. 118.
    D.A.B. Miller, S.D. Smith: Opt.Commun. 31,101 (1979)ADSCrossRefGoogle Scholar
  2. 119.
    A.K. Kar, J.G.H. Mathew, S.D. Smith, B. Davis, W. Prettl: Appl. Phys. Lett. 42, 334 (1983)ADSCrossRefGoogle Scholar
  3. 118.
    Spatial Effects (Kinks, Phase Coexistence) in Optical BistabilityGoogle Scholar
  4. 120.
    S.W. Koch, H.E. Schmidt, H. Haug: J. Lum. 30,232 (1985)CrossRefGoogle Scholar
  5. 121.
    H.M. Gibbs, G.R. Olbright, N. Peyghambarian, H.E. Schmidt, S.W. Koch, H. Haug: Phys. Rev. A32, 692 (1985)ADSGoogle Scholar
  6. 122.
    H. Haug, S.W. Koch: IEEE J. QE-21,1385 (1985)CrossRefGoogle Scholar

Chaos in Optical Bistability

  1. 123.
    H.M. Gibbs, F.A. Hopf, D.L. Kaplan, R.L. Shoemaker: Phys. Rev. Lett. 46,474 (1981)ADSCrossRefGoogle Scholar
  2. 124.
    R. Neumann, S.W. Koch, H.E. Schmidt, H. Haug: Z. Phys. B55,155 (1984)MathSciNetADSCrossRefGoogle Scholar
  3. 125.
    J.R. Ackerhalt, P.W. Milonni, M.L. Shik: Phys. Repts. 128,205 (1985)ADSCrossRefGoogle Scholar
  4. 125a.
    H. Haug: In Lasers and Synergetics ,ed. by R. Graham, Springer Proc. in Phys. (Springer, Berlin, Heidelberg 1987)Google Scholar

Optically Induced Avalanche

  1. 126.
    T.W. Nee, CD. Cantrell, J.F. Scott, M. Scully: Phys. Rev. B17, 3936 (1978)ADSGoogle Scholar
  2. 127.
    T. Grave, E. Schöll, H. Wurz: J. Phys. C16,1693–1711 (1983)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische PhysikRheinisch-Westfälische Technische HochschuleAachenFed. Rep. of Germany

Personalised recommendations