Integrated Electro-optic Devices

  • E. Voges
Part of the Springer Proceedings in Physics book series (SPPHY, volume 18)

Abstract

Integrated electro-optic devices serve the functions of rapid light modulation, time-multiplexing, signal routing, tunable filtering, and polarization conversion. They are attractive devices due to their potential applications for wide-band optical communication, optical signal processing, and sensors. Today, most interest is given to electro-optic devices on LiNbO3 because of the known technology for fabricating optical strip waveguides, their large modulation bandwidth B beyond 10 GHz and their relatively low driving power of about 100 mW. The growing interest in semiconductor-based integrated optics resulted in various examples of electrooptic modulators on GaAs- and InP-substrates. We compare both technologies. However, emphasis is given here to the operational principles, the configurations, and properties of LiNbO3 modulators with titanium indiffused strip waveguides.

Keywords

Titanium Attenuation GaAs Coupler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    R.C. Alferness: IEEE J. Quantum Electron. QE-17, 946 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    D. Marcuse: IEEE J. Quantum Electron. QE-18, 393 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    O.G. Ramer: IEEE J. Quantum Electron. QE-18, 386 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    L. Thylen, P. Granestrand: J. Opt. Commun. 7, 11 (1986)CrossRefGoogle Scholar
  5. 5.
    W. Mevenkamp, E. Voges: to be published 1986 in AEÜGoogle Scholar
  6. 6.
    R.V. Schmidt: In Integrated Optics, Physics and Applications, ed. by S. Martellucci, A.N. Chester (Plenum Press, New York 1983)Google Scholar
  7. 7.
    L.L. Buhl et al.: Tech. Digest Toptical Meeting on Integrated and Guided-Wave Optics, Atlanta, USA 1986, paper WA A5Google Scholar
  8. 8.
    D. Eberhard, E. Voges: Opt. Letters 9, 22 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    F. Auracher, R. Keil: Wave Electron. 4, 129 (1980)Google Scholar
  10. 10.
    P. Buchmann et al.: Appl. Phys. Lett. 46, 462 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    M. Izutzu, T. Sueta: IEEE J. Quantum Electron. QE-19, 668 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    K.C. Gupta, R. Garg, I.J. Bahl: Microstrip lines and slotlines (Artech House Inc. Dednam USA, 1979)Google Scholar
  13. 13.
    H. Kogelnik: In Integrated Optics, 2nd. ed., ed. by T. Tamir, Topics Appl. Phys., Vol. 7 (Springer, Berlin 1979)Google Scholar
  14. 14.
    H. Kogelnik, R.V. Schmidt: IEEE J. Quantum Electron. QE-12, 396 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    M. Papouchon, A. Roy: Appl. Phys. Lett. 31, 266 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    C.L. Chang, C.S. Tsai: Topical Meeting on Integrated and Guided-Wave Optics, Asilomar, USA, 1982Google Scholar
  17. 17.
    A. Neyer: Electron. Lett. 19, 553 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    A. Neyer et al.: J. Lightwave Tech. LT-3, 635 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    M.D. Feit, Appl. Opt. 17, 3990 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    C.S. Tsai et al.: Topical Meeting on Integrated and Guided-Wave Optics, Kissimee, Florida USA, 1984, post deadline paper PD5Google Scholar
  21. 21.
    A. Neyer et al.: Tech. Digest Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, USA, 1986, paper WA A2Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • E. Voges
    • 1
  1. 1.Lehrstuhl für HochfrequenztechnikUniversität DortmundDortmund 50Fed. Rep. of Germany

Personalised recommendations