Evidence for AC Fields from Living Biological Cells

  • H. A. Pohl
  • W. T. Phillips
  • J. K. Pollock


Following the stimulating suggestion by Herbert Fröhlich in 1968, oscillating electric fields are now found to be produced by living cells. These natural oscillating electric fields of cells at frequencies in the order of 30 Hz or higher are evidenced by:
  1. (1)

    direct instrumental detection and observation.

  2. (2)

    the use of tiny particulate probes of either very high or very low dielectric permittivity, together with knowledge about nonuniform field effects (dielectrophoresis, or DEP for short).

  3. (3)

    cellular spin resonance (CSR), the frequency-sensitive spinning of cells or small particles.

  4. (4)

    the observation that certain species of fish emit radio frequency signals in the range of 1 to 60 kHz. This emission can hardly be imagined to be other than cellular in origin.

  5. (5)

    the formation of rouleaux by red blood cells mediated by long-range interactions (up to 4 micrometers).

Two major conclusions emerge from these studies:
  1. (I)

    That natural ac oscillations appear to be “universal” in that they have been detected in all types of cells examined, and especially in those capable of reproduction.

  2. (II)

    The oscillations detected by DEP (mendtioned above) appear to be maximal at or near mitosis, at least in yeast, where the phase of the life cycle is most easily followed.


The role of these natural ac fields of living cells is yet to be determined. Still under continuing is the critical question as to whether they are essential or mere incidentals to cellular life.


Dielectric Constant High Dielectric Constant Powder Pattern Strontium Titanate Hanging Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.M. Arnold and U. Zimmermann, Z. Naturforsch. 37, 908 (1982).Google Scholar
  2. M.J. Berridge and P.E. Rapp, J. Exp. Biol. 81, 217 (1979).Google Scholar
  3. H. Block, E. Kluk, J. McConnell, and B.K.P. Scaife, J. Colloid Interface Sci. 101, 320 (1984).CrossRefGoogle Scholar
  4. J.M. Cantril and H.A. Pohl, J. Electrochem. Soc. 115, 700 (1968).CrossRefGoogle Scholar
  5. C.S. Chen, (1973), On the Nature and Origins of Biological Dielectrophoresis, Ph.D. Thesis, Oklahoma State University, Stillwater, OK 74078.Google Scholar
  6. A.S. Davydov, Sov. Phys. JETP 51, 397 (1980).ADSGoogle Scholar
  7. E. Del Guidice, S. Doglia, and M. Milani, Phys. Scripta 26, 232 (1982).ADSCrossRefGoogle Scholar
  8. H. Fröhlich, Int. J. Quantum Chem. 2, 641 (1968).ADSCrossRefGoogle Scholar
  9. H. Fröhlich, in Brain Interactions with Weak Electric and Magnetic Fields, S.M. Bawin and W.R. Adey, Eds., Neurosci. Res. Progr. Bull. 15, 67 (1977).Google Scholar
  10. H. Fröhlich, Adv. Electron. Electron Phys. 53, 85 (1980).CrossRefGoogle Scholar
  11. H. Fröhlich, Bioelectromagnetics 3, 45 (1982).CrossRefGoogle Scholar
  12. A.A. Furedi and R.C. Valentine, Biochem. Biophys. Acta 56, 33 (1962).CrossRefGoogle Scholar
  13. R. Glaser, G. Fuhr, and J. Gimsa, Studia Biophys. 96, 11 (1983).Google Scholar
  14. L.H. Hartwell, R.K. Mortimer, J. Culotti, and M. Culotti, Genetics 74, 267 (1973).Google Scholar
  15. L.H. Hartwell, J. Culotto, J.R. Pringer, and B.J. Reid, Science 183, 46 (1974).ADSCrossRefGoogle Scholar
  16. J.H. Heller, (1959), Digest of 12th Ann. Conf. on Electronic Techniques in Medicine and Biology, Institute of Radio Engineers/American Institute of Electrical Engineers/Instrument Society of America, p 56.Google Scholar
  17. C. Holzapfel, J. Vienken, and U. Zimmermann, J. Membrane Biol. 67, 13 (1982).CrossRefGoogle Scholar
  18. A.H. Jafary-Asl and C.W. Smith, Ann. Rep. Conf. on Elec. Insul, and Dielec. Phenomena, IEEE Publ. 83 CH 1902-6, 350 (1983).Google Scholar
  19. A.H. Jafary-Asl, S.N. Solanki, E. Aarholt, and C.W. Smith, J. Biol. Phys. 11, 15 (1983b).CrossRefGoogle Scholar
  20. A. Lampa, Akad. Wiss. Wien, Sitz. Ber. 115, (2a); 1659 (1906).MATHGoogle Scholar
  21. I. Lamprecht and M. Mischel, Naturwissenschaften 68, 501 (1981).ADSCrossRefGoogle Scholar
  22. P. Lertes, Z. Phys. 4, 315 (1921).ADSCrossRefGoogle Scholar
  23. M. Mischel and I. Lamprecht, Z. Naturforsch. 35c, 111 (1980).Google Scholar
  24. M. Mischel and I. Lamprecht, J. Biol. Phys. 11, 43 (1983).CrossRefGoogle Scholar
  25. M. Mischel and H.A. Pohl, J. Biol. Phys. 11, 98 (1983).CrossRefGoogle Scholar
  26. M. Mischel, A. Voss, and H.A. Pohl, J. Biol. Phys. 10, 227 (1983).Google Scholar
  27. H.A. Pohl, J. Appl. Phys. 22, 869 (1951).ADSCrossRefGoogle Scholar
  28. H.A. Pohl, J. Appl. Phys. 29, 1182 (1958).ADSCrossRefGoogle Scholar
  29. H.A. Pohl, Dielectrophoresis, The Behavior of Matter in Nonuniform Electric Fields, Cambridge University Press, London, 1978.Google Scholar
  30. H.A. Pohl, “Micro-dielectrophoresis of dividing cells,” in Bioelectrochemistry, H. Keyzer and F. Gutmann, Eds., Plenum, 1980a, pp 273–295.Google Scholar
  31. H.A. Pohl, Int. J. Quantum Chem. 7, 411 (1980b).Google Scholar
  32. H.A. Pohl, J. Biol. Phys. 7, 1 (1980c).ADSCrossRefGoogle Scholar
  33. H.A. Pohl, J. Theor. Biol. 93, 207 (1981a).CrossRefGoogle Scholar
  34. H.A. Pohl, J. Bioenerg. Biomembranes 13, 149 (1981b).Google Scholar
  35. H.A. Pohl, Coll. Phenom. 3, 221 (1981c).Google Scholar
  36. H.A. Pohl, Int. J. Quantum Chem., Quantum Biol. Symp. 9, 399 (1982).Google Scholar
  37. H.A. Pohl, J. Biol. Phys. 11, 59 (1983a).CrossRefGoogle Scholar
  38. H.A. Pohl, J. Biol. Phys. 11, 66 (1983b).MathSciNetCrossRefGoogle Scholar
  39. H.A. Pohl, Int. J. Quantum Chem. 10, 161 (1983c).Google Scholar
  40. H.A. Pohl, “Cellular Spin Resonance Spectrometer,” U.S. Patent No$14,569, 741. Issued Feb. 11, 1986.Google Scholar
  41. H.A. Pohl and T. Braden, J. Biol. Phys. 10, 17 (1982).CrossRefGoogle Scholar
  42. H.A. Pohl, T. Braden, S. Robinson, J. Piclardi, D.G. Pohl, J. Biol. Phys. 1, 133 (1981).CrossRefGoogle Scholar
  43. H.A. Pohl and J.S. Crane, Biophys. J. 11, 711 (1971).ADSCrossRefGoogle Scholar
  44. H.A. Pohl and I. Lamprecht, (1984), Umschau 6, 366 (1984).Google Scholar
  45. H.A. Pohl and M. Pollak, J. Chem. Phys. 66, 4031 (1977).ADSCrossRefGoogle Scholar
  46. H.A. Pohl and J.J. Wyhof, Non-Cryst. Solids 11, 137 (1972).ADSCrossRefGoogle Scholar
  47. J.R. Pringle and L.H. Hartwell, in Molecular Biology of the Yeast Saccharomyces, J.N. Strathern, E.W. Jones, and J.R. Broach, Eds., Cold Spring Harbor Laboratory, 1981.Google Scholar
  48. P.E. Rapp, J. Exp. Biol. 81, 281 (1979).Google Scholar
  49. S.I. Reed, (1980), Genetics 95, 561 (1980).Google Scholar
  50. S.I. Reed, (1984), in The Microbial Cell Cycle, P. Nurse and E. Streiblova, Eds., CRC Press, Boca Raton, FL, 1984.Google Scholar
  51. H. Rivera, J.P. Biscar and H.A. Pohl, (1983), private communication.Google Scholar
  52. H. Rivera and H.A. Pohl, (1986), “Cellular Spin Resonance,” in Modern Bioelectrochemistry, F. Gutmann and H. Keyzer, Eds., Plenum, New York, 1986, Chap. 15.Google Scholar
  53. H. Rivera, J.K. Pollock, and H.A. Pohl, Cell. Biophys. 7, 43–55 (1985).Google Scholar
  54. S. Rowlands, in Coherent Excitations in Biological Systems, H. Fröhlich and F. Kremer, Eds., Springer, Berlin, 1983a, p 145.Google Scholar
  55. W. Rowlands, C.P. Eisenberg, and L.S. Sewchand, J. Biol. Phys. 11, 1 (1983b).CrossRefGoogle Scholar
  56. S. Rowlands, L.S. Sewchand, and E.G. Enns, Can. J. Physiol. Pharm. 60, 52 (1982).CrossRefGoogle Scholar
  57. S. Rowlands, L.S. Sewchand, R.E. Lovlin, J.S. Beck, and E.G. Enns, Phys. Lett. 82A, 426 (1981).Google Scholar
  58. S.C. Roy, T. Braden, and H.A. Pohl, Phys. Lett. 83A, 142 (1981).CrossRefGoogle Scholar
  59. F. A. Sauer, in Coherent Excitations in Biological Systems, H. Fröhlich and F. Kremer, Springer, Berlin, 1983, p 134.Google Scholar
  60. F.A. Sauer and R.W. Schloegl, in Interactions between Electromagnetic Fields and Cells, Chiabrera, C. Nicolini and H.P. Schwan, Eds., Plenum, New York, 1985, p. 203.Google Scholar
  61. S. Schmidt and P. Ortoleva, J. Chem. Phys. 71, 1010 (1979).ADSCrossRefGoogle Scholar
  62. J.E. Treherne, W.A. Foster, and P.K. Schofield, (1979), Cellular Oscillators, J. Exp. Biol. 81 (review volume).Google Scholar
  63. M. Westby and F. Kirschbaum, J. Compar. Physiol. 145, 399 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. A. Pohl
  • W. T. Phillips
    • 1
  • J. K. Pollock
  1. 1.Dept. Of Radiology, Health Science CenterUniversity of TexasSan AntonioUSA

Personalised recommendations