Skip to main content

Non-Thermally Excited Modes and Free Energy Transduction in Proteins and Biological Membranes

  • Chapter
Book cover Energy Transfer Dynamics

Abstract

The thermodynamic properties of aqueous globular proteins are considered, both when at equilibrium in a heat bath and during enzymatic catalysis. It is recognized that they exhibit thermally driven conformational fluctuations of great complexity and on time scales that may be much faster than the enzyme turnover time. Yet conformational states of proteins can store free energy under macroscopically isothermal conditions. This requires that they possess special, collective, non-thermally excited modes both during enzymatic catalysis and, in particular, during free energy conservation. Electron transport phosphorylation and related membrane processes provide well-defined examples of this latter behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Ansari, J. Berendzen, S.F. Bowne, H. Frauenfelder, I.E.T. Iben, T.B. Sauke, E. Shyamsunder, and R.D. Young, Proc. Natl. Acad. Sci. U.S.A. 82, 5000–5004 (1985).

    Article  ADS  Google Scholar 

  • J.D. Barrow and J. Silk, The Left Hand of Creation, The Origin and Evolution of the Expanding Universe, Unwin, London, 1983.

    Google Scholar 

  • J.A. Berzofsky, Science 229, 932–940 (1985).

    Article  ADS  Google Scholar 

  • H. Bilz, H. Büttner, and H. Fröhlich, Z. Naturforsch. 36b, 208–212 (1981).

    Google Scholar 

  • L.A. Blumenfeld, Physics of Bioenergetic Processes, Springer, Heidelberg, 1983.

    Book  Google Scholar 

  • G. Careri, P. Fasella, and E. Gratton, Annu. Rev. Biophys. Bioeng. 8, 69–97 (1979).

    Article  Google Scholar 

  • G. Careri, M. Geraci, A. Giansanti, and J.A. Rupley, Proc. Natl. Acad. Sci. U.S.A. 82, 5342–5346 (1985).

    Article  ADS  Google Scholar 

  • G. Careri and J. Wyman, Proc. Natl. Acad. Sci. U.S.A. 81, 4386–4388 (1984).

    Article  ADS  Google Scholar 

  • F.L. Carter, Physica 10D, 175–194 (1984).

    MathSciNet  Google Scholar 

  • K.-C. Chou, Biophys. Chem. 20, 61–71 (1984).

    Article  Google Scholar 

  • A. Cooper, Prog. Biophys. Mol. Biol. 44, 181–214 (1984).

    Article  Google Scholar 

  • A.S. Davydov, “Energy transfer along alpha-helical proteins,” in Structure and Dynamics: Nucleic Acids and Proteins, E. Clementi and R.H. Sarma, Eds., Adenine Press, New York, 1983, pp 377–387.

    Google Scholar 

  • E. Del Giudice, S. Doglia, M. Milani, and M.P. Fontana, Cell. Biophys. 6, 117–129 (1984).

    Google Scholar 

  • S.W. Englander and N.R. Kallenback, Q. Rev. Biophys. 16, 521–655.

    Google Scholar 

  • S.J. Ferguson, Biochim. Biophys. Acta 811, 47–95 (1985).

    Google Scholar 

  • A.R. Fersht, Enzyme Structure and Mechanism, 2nd Ed., Freeman, San Francisco, 1985.

    Google Scholar 

  • H. Fröhlich, Int. J. Quantum Chem. 2, 641–649 (1968).

    Article  ADS  Google Scholar 

  • H. Fröhlich, “Quantum mechanical concepts in biology,” in Proc. 1st Int. Conf. on Theoretical Physics and Biology, M. Marois, Ed., North Holland, Amsterdam, 1969, pp 13–22.

    Google Scholar 

  • H. Fröhlich, Adv. Electron. Electron Phys. 53, 85–152 (1980).

    Article  Google Scholar 

  • H. Fröhlich and F. Kremer, Eds., Coherent Excitations in Biological Systems, Springer, Heidelberg, 1983.

    Google Scholar 

  • F.R.N. Gurd and T.M. Rothgeb, Adv. Protein Chem. 33, 73–165 (1979).

    Article  Google Scholar 

  • H. Haken, Synergetics, Springer, Heidelberg, 1977.

    Google Scholar 

  • C.M. Harris, G.D. Hitchens, and D.B. Kell, “Dielectric spectroscopy of microbial membrane systems,” in Charge and Field Effects in Biosystems, M.J. Allen and P.N.R. Usherwood, Eds., Abacus, Tunbridge Wells, 1984, pp 179–185.

    Google Scholar 

  • C.M. Harris and D.B. Kell, Eur. Biophys. J. 13, 11–24 (1985).

    Article  Google Scholar 

  • G. D. Hitchens and D.B. Kell, Biochim. Biophys. Acta 766, 222–232 (1984). 244

    Article  Google Scholar 

  • R. Jaenicke, Angew. Chem. Int. Ed. Engl. 23, 395–413 (1984).

    Article  Google Scholar 

  • Jardetzky and R. King, Ciba Found. Symp. 93, 295–309 (1983).

    Google Scholar 

  • W.P. Jencks, “What everyone wanted to know about tight binding and enzyme catalysis, but never thought of asking,” in Chemical Recognition in Biology, F. Chapeville and A.L. Haenni, Eds., Springer, Heidelberg, 1980, pp 1–25.

    Google Scholar 

  • D.B. Kell, Trends Biochem. Sci. 7, 349 (1982).

    Article  Google Scholar 

  • D.B. Kell, Bioelectrochem. Bioenerg. 11, 405–415 (1983).

    Article  Google Scholar 

  • D.B. Kell and C.M. Harris, Eur. Biophys. J. 12, 181–197 (1985).

    Article  Google Scholar 

  • D.B. Kell and G.D. Hitchens, Faraday Discuss. Chem. Soc. 74, 377–388 (1982).

    Article  Google Scholar 

  • D.B. Kell and G.D. Hitchens, “Coherent properties of the membranous systems of electron transport phosphorylation,” in Coherent Excitation in Biological Systems, H. Fröhlich and F. Kremer, Eds., Springer, Heidelberg, 1983, pp 178–198.

    Google Scholar 

  • D.B. Kell and H.V. Westerhoff, (1985), “Catalytic facilitation and membrane bioenergetics,” in Organized Multienzyme Systems: Catalytic Properties, G.R. Welch, Ed., Academic Press, New York, 1985, pp. 63–139.

    Google Scholar 

  • G. Kemeny, Proc. Natl. Acad. Sci. U.S.A. 71, 2655–2657 (1974).

    Article  ADS  Google Scholar 

  • T.S. Kuhn, The Structure of Scientific Revolutions, Chicago University Press, Chicago, 1970.

    Google Scholar 

  • P.S. Lomdahl, “Nonlinear dynamics of globular protein,” in Nonlinear Electrodynamics in Biological Systems, W.R. Adey and A.F. Larence, Eds., Plenum, New York, 1984, pp 143–154.

    Chapter  Google Scholar 

  • P.S. Lomdahl, S.P. Layne, and I.J. Bigio, Los Alamos Sci. 10, 2–31 (1984).

    Google Scholar 

  • R. Lumry, (1980), “Dynamical aspects of small- molecule protein interactions,” in Bioenergetics and Thermodynamics: Model Systems, A. Braibanti, Ed., Reidel, Dordrecht, 1980, pp 435–452.

    Google Scholar 

  • R. Lumry and R. Biltonen, (1969), “Thermodynamic and kinetic aspects of protein conformation in relation to physiological function,” in Structure and Stability of Biological Macromolecules, S.N. Timasheff and G.D. Fasman, Eds., Dekker, New York, 1969, pp 65–212.

    Google Scholar 

  • J.A. McCammon, Rep. Progr. Phys. 47, 1–46 (1984).

    Article  ADS  Google Scholar 

  • C.W.F. McClare, J. Theor. Biol. 30, 1–34, (1971).

    Article  Google Scholar 

  • P. Mitchell, Biol. Rev. 41, 445–502, (1966).

    Article  Google Scholar 

  • M. Mutter, Angew. Chem. Int. Ed. Engl. 24, 639–653 (1985).

    Article  Google Scholar 

  • G. Nicolis and I. Prigogine, Self-organization in Non-equilibrium Systems, Wiley, Chichester, 1977.

    Google Scholar 

  • D.G. Nicholls, Bioenergetics. An Introduction to the Chemiosmotic Theory, Academic Press, London, 1982.

    Google Scholar 

  • H. A. Pohl, Coll. Phenom. 3, 221–244 (1981).

    Google Scholar 

  • A.A. Ribeiro, R. King, and O. Jardetzky, (1983), “Rotational solitons in folded polypeptide chains,” in Conformation in Biology, R. Srinivasan and R.H. Sarma, Eds., Adenine Press, New York, 1983, pp 39–47.

    Google Scholar 

  • D. Ringe and G.A. Petsko, Progr. Biophys. Mol. Biol. 45, 197–235 (1985).

    Article  Google Scholar 

  • E. Schrödinger, What is Life?, Cambridge University Press, Cambridge, 1944.

    Google Scholar 

  • A. C. Scott, “Solitons on the alpha-helix protein,” in Structure and Dynamics: Nucleic Acids and Proteins, E. Clementi and R.H. Sarma, Eds., Adenine Press, New York, 1983, pp 389–404.

    Google Scholar 

  • M.L. Sinnott, Chem. Brit. 17, 293–297 (1979).

    Google Scholar 

  • B. Somogyi, G.R. Welch, and S. Damjanovich, Biochim. Biophys. Acta 768, 81–112 (1984).

    Google Scholar 

  • S.J. Webb, Phys. Rep. 60, 201–224 (1980).

    Article  ADS  Google Scholar 

  • G.R. Welch, Ed., The Fluctuating Enzyme, Wiley, New York, 1986.

    Google Scholar 

  • G.R. Welch and D.B. Kell, “Not just catalysts. The bioenergetics of molecular machines,” in The Fluctuating Enzyme, G.R. Welch, Ed., Wiley, New York, 1986.

    Google Scholar 

  • G. R. Welch, B. Somogyi, and S. Damjanovich, Progr. Biophys. Mol. Biol. 39, 109–146 (1982).

    Article  Google Scholar 

  • H. V. Westeroff, B.A. Melandri, G. Venturoli, G.F. Azzone, and D.B. Kell, Biochim. Biophys. Acta 768, 257–292 (1984).

    Google Scholar 

  • R.J.P. Williams and G.R. Moore, Trends Biochem. Sci. 10, 96–97 (1985).

    Article  Google Scholar 

  • S. Yomosa, J. Phys. Soc. Jpn. 52, 1866–1873 (1983).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kell, D.B. (1987). Non-Thermally Excited Modes and Free Energy Transduction in Proteins and Biological Membranes. In: Barrett, T.W., Pohl, H.A. (eds) Energy Transfer Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71867-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71867-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17502-5

  • Online ISBN: 978-3-642-71867-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics