Improved Energy Transfer in Laser Target Interaction Processes by Using Repetitively Pulsed Lasers

  • M. Hugenschmidt
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 15)


For laser material processing CO2-lasers proved to be one of the major candidates as a reliable and highly efficient source of high-power radiation. Experimental results are reported, that come from recent investigations using a repetitively pulsed high average power C02-laser, allowing higher energy transfer rates to be obtained for any given target than those achieved with continuous wave lasersystems at comparable mean power densities, even for highly infrared reflecting materials such as for example aluminum.


Thermal Coupling High Average Power Laser Material Processing Plasma Ignition High Repetition Rate Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Herziger: Physics of Laser Materials Processing, Proc. 3rd Int. Symp. on Optical and Optoelectronic Applied Sciences and Engineering, 14.-18.-4.1986, Innsbruck, SPIE Conf. 650, High-Power Lasers and Their Industrial Applications (1986)Google Scholar
  2. 2.
    J.F. Ready: Material Processing - An Overview, Proc. IEEE, 70, pp. 533 (1982)CrossRefADSGoogle Scholar
  3. 3.
    H. KÖbner: Industrial Applications of Lasers, John Wiley and Sons (1984)Google Scholar
  4. 4.
    Multiple authors: Internationaler Workshop über Materialbearbeitung mit C02- Hochleistungslasern Düsseldorf, 26.-27.3.1984, VDI-Bericht ISSN 0083-5560, Nr. 535 (1984)Google Scholar
  5. 5.
    D. Schuöcker (editor): Industrial Applications of High-Power Lasers, Linz, 26.-27.9.1983, SPIE 455 (1983)Google Scholar
  6. 6.
    E. Beyer, P. Loosen, R. Poprawe, G. Herziger: The Development of Laser Technology and its Importance for Material Processing Laser-Optoelectronics, 17, pp. 274 (1985)Google Scholar
  7. 7.
    S.V. Drobyasko et al.: Pulse-Periodic and cw C02-Lasers Pumped With a Self-Sustained Pulsed Discharge for Use in Heat Processing Sov. J. Quantum Electron. 15, pp. 1631 (1985)CrossRefADSGoogle Scholar
  8. 8.
    M. Hugenschmidt, R. Joecklé: Continuous Wave and Pulsed Laser Target Interaction, Proc. 5th GCL-Symposium, Oxford, ed. by A.S. Kaye, A.C. Walker,Adam Hilger Ltd. pp. 47 (1984)Google Scholar
  9. 9.
    C.R. Chatwin, B.F. Scott: High PRF Nitrogen-Carbon Dioxide Laser for Continuous Manufacturing Processes in Metals, private communication (1986)Google Scholar
  10. 10.
    V.N. Anisimov et al.: Material Processing by High Repetition Rate Pulsed Excimer and Carbon Dioxide Lasers, Appl. Optics 23, pp. 18 (1984)CrossRefADSGoogle Scholar
  11. 11.
    J.R. Couick, B.S.: Enhanced Thermal Coupling by a Repetitively Pulsed Laser, Thesis, AFIT/GAE/AA/85M-3Google Scholar
  12. 12.
    W.E. Maher, R.B. Hall: Experimental Thermal Coupling of Laser Beams, J. Appl. Phys. 49, pp. 2254 (1978)CrossRefADSGoogle Scholar
  13. 13.
    J.A. McKay, J.F. Schriempf: Pulsed C02-Lasers for the Surface Heating and Melting of Metals, IEEE J. QE-17, pp. 2008 (1981)Google Scholar
  14. 14.
    Ya. B. Zel’dovich, Yu. P. Raizer: Physics of Shock Waves and Hydrodynamic Phenomena, 1, Academic Press (1986)Google Scholar
  15. 15.
    P.D. Thomas: Laser Absorption Wave Formation, AIAA 7th Fluid and Plasma Dynamic Conference, Palo Alto, Ca (AIAA paper No. 74–566 ) (1974)Google Scholar
  16. 16.
    K. Darée: Stationäre eindimensionale Modelle für lasererzeugte Plasma, Bericht des Deutsch-Französisches Forschungsinstitut Saint-Louis (ISL) R 107 /85 (1985)Google Scholar
  17. 17.
    Yu. V. Arkhipov et al.: Optical Breakdown Threshold of Air Near a Polished Metal Surface for λ = 10.6 µ Radiation, Sov. J. Quantum Electron. 16, No. 1, pp. 63 (1986)CrossRefADSGoogle Scholar
  18. 18.
    V.I. Mazhukin et al.: Low-Temperature Laser Plasmas Near Metal Surfaces in High-Pressure Gases, Sov. J. Quantum Electron. 13, No. 4, pp. 419 (1983)CrossRefADSGoogle Scholar
  19. 19.
    P.J. Torvik: On the Generation of Stress and Deformation in Elastic Solids by High Powered Lasers, Report AFIT, TR 80 - 6 (1980)Google Scholar
  20. 20.
    M. Hugenschmidt: Interaction of Repetitively Pulsed High-Energy Laser Radiation with Matter, Proc. 3rd Int. Symp. on Optical and Optoelectronic Applied Sciences and Engineering, 14–13.4.1986, Innsbruck, SPIE Conf. 650, High-Power Lasers and Their Industrial Applications (1986)Google Scholar
  21. 21.
    E.W. Roschger: Beam Shaping in a High-Power Laser System, Inst. Ang. Physik, Univ. Bern, Int. Ber.: 84-85-BAL-I (1984)Google Scholar
  22. 22.
    P. Loosen, E. Beyer, R. Kramer: Diagnostics of CO2-Laser Beams, Laser Optoelektronik 17, pp. 278 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Hugenschmidt
    • 1
  1. 1.French-German Research Institute Saint-LouisSaint-Louis CedexFrance

Personalised recommendations