Skip to main content

Ligand-Binding Sites on Calmodulin

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Calcium plays a pivotal role as an intracellular messenger in all eukaryotic cells. In resting cells the Ca2+ level is kept as low as 10–7 M. A series of membrane-bound exchange proteins and ATP-driven pump proteins are responsible for excreting the Ca2+ into the extracellular environment or into intracellular organelles that function as calcium stores. Taken together, these proteins produce a 10 000-fold gradient of Ca2+ over the plasma membrane, thus creating a situation that lends itself to a regulatory function (Rasmussen 1983). A hormonal or nerval impulse can generate an influx of Ca2+ into the cytoplasm through the calcium channels. This influx gives rise to a transiently increased Ca2+ level inside the cell. Although the Ca2+ concentration in an activated cell may differ widely between various cell types, it is generally around 10–6 M, which represents a tenfold increase from the resting level of 10–7 M (Rasmussen 1983). This situation is schematically depicted in Fig. 1. As a second step, the transient increase in intracellular Ca2+ needs to be translated into metabolic or contractile responses. To this end, nature has deployed a unique class of calcium-binding proteins. Upon binding Ca2+ they undergo a large conformational change which allows them to interact with and activate specific target proteins. For example, in skeletal and cardiac muscles the protein troponin C is the calcium-binding component which triggers contraction. In smooth muscle tissues the homologous protein calmodulin (CaM) is responsible for the Ca2+ triggering of the initiation of contraction (see Chap. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adunyah ES, Niggli V, Carafoli E (1982) The anticalmodulin drugs trifluoperazine and R24571 remove the activation of purified erythrocyte Ca2+-ATPase by acidic phospholipids and by controlled proteolysis. FEBS Lett 143:65–68

    PubMed  CAS  Google Scholar 

  • Andersson A (1986) Calmodulin: binding of cations and drugs studied by NMR and stop-ped-flow techniques. Ph D Thesis, University of Lund, Lund, Sweden

    Google Scholar 

  • Andersson A, Forsén S, Thulin E, Vogel HJ (1983) Cadmium-113 nuclear magnetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry 22:2309–2313

    PubMed  CAS  Google Scholar 

  • Andersson A, Drakenberg T, Forsén S (1985) The interaction of various drugs with calmodulin as monitored by cadmium-113 NMR. In: Hidaka T, Hartshorne D (eds) Calmodulin antagonists and cellular physiology. Academic, New York, pp 27–45

    Google Scholar 

  • Andreasen TJ, Keller CH, LaPorte DC, Edelman AM, Storm DR (1981) Preparation of azidocalmodulin: a photoaffinity label for calmodulin-binding proteins. Biochemistry 78:2782–2785

    CAS  Google Scholar 

  • Aulabaugh A, Niemczyra WP, Blundell TL, Gibbons WA (1984) A study of the interactions between residues in the C-terminal half of calmodulin by one and two-dimensional NMR methods and computer modelling. Eur J Biochem 143:409–418

    PubMed  CAS  Google Scholar 

  • Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature 315:37–40

    PubMed  CAS  Google Scholar 

  • Bayley P, Ahlstrom P, Martin SR, Forsén S (1984) The kinetics of calcium binding to calmodulin: QUIN-2 and ANS stopped flow fluorescence. Biochem Biophys Res Commun 120:185–191

    PubMed  CAS  Google Scholar 

  • Berntsson P, Wold S (1986) Comparison between X-ray crystallographic data and physico-chemical parameters with respect to their information about the calcium channel antagonist activity of 4-phenyl-1,4-dihydropyridines. Quant Struct Act Relat (to be published)

    Google Scholar 

  • Berntsson P, Johansson E, Westerlund C (1987) Felodipine analogues, structure activity relationships. J Cardiovasc Pharm 10:560–565

    Google Scholar 

  • Blumenthal DK, Stull JT (1982) Effects of pH, ionic strength, and temperature on activation by calmodulin and catalytic activity of myosin light chain kinase. Biochemistry 21:2386–2391

    PubMed  CAS  Google Scholar 

  • Blumenthal DK, Takio K, Edelman AM, Charbonneau H, Titani K, Walsh KA, Krebs EG (1985) Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 82:3187–3191

    PubMed  CAS  Google Scholar 

  • Boström SL, Ljung B, Mardh S, Forsén S, Thulin E (1981) Interaction of the antihypertensive drug felodipine with calmodulin. Nature 292:777–778

    PubMed  Google Scholar 

  • Boströom SL, Ljung B, Nordlander M, Johanssen B (1985) Actions of felodipine in vascular smooth muscle. In: Hidaka T, Hartshorn D (eds) Calmodulin antagonists and cellular physiology. Academic, New York, pp 273–286

    Google Scholar 

  • Boström SL, Westerlund C, Rochester S, Vogel HJ (1987) Binding of the dihydropyridine felodipine to calmodulin and related calcium-binding proteins (to be published)

    Google Scholar 

  • Brzeska H, Szynklowicz J, Drabikowski W (1983) Localization of hydrophobic sites in calmodulin and skeletal muscle troponin C studies using tryptic fragments. A simple method of their preparation. Biochem Biophys Res Commun 115:87–93

    PubMed  CAS  Google Scholar 

  • Buccigros JM, O’Donnel CL, Nelson DJ (1986) A flow-dialysis method for obtaining relative measures of association constants in calmodulin metal-ion systems. Biochem J 235:677–684

    Google Scholar 

  • Burger D, Cox JA, Comte M, Stein EA (1984) Sequential conformational changes in calmodulin upon binding of Ca2+. Biochemistry 23:1966–1971

    CAS  Google Scholar 

  • Cachia PJ, Van Eyk J, Ingraham RH, McCubbin WD, Kay CM, Hodges RS (1986) Calmodulin and troponin C: a comparative study of the interaction of mastoparan and troponin I inhibitory peptide. Biochemistry 25:3553–3562

    PubMed  CAS  Google Scholar 

  • Chao S-H, Suzuki Y, Zysk JR, Cheung WY (1984) Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol 26:75–82

    PubMed  CAS  Google Scholar 

  • Charbonneau H, Cormier MJ (1979) Purification of calmodulin on immobilized phenothi-azines. Biochem Biophys Res Commun 90:1039–1047

    PubMed  CAS  Google Scholar 

  • Chong PCS, Hodges RS (1981) A new heterobifunctional cross-linking reagent for the study of biological interactions between proteins. J Biol Chem 256:5064–5076

    PubMed  CAS  Google Scholar 

  • Comte M, Maulet Y, Cox JA (1983) Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem J 209:269–272

    PubMed  CAS  Google Scholar 

  • Cox JA, Comte M, Fitton JE, DeGrado WF (1985) The interaction of calmodulin with am-phiphilic peptides. J Biol Chem 260:2527–2534

    PubMed  CAS  Google Scholar 

  • Craig TA, Watterson DM, Prendergast FG, Haiech J, Roberts DM (1987) Site-specific mutagenesis of the α-helices of calmodulin. J Biol Chem 262:3278–3284

    PubMed  CAS  Google Scholar 

  • Dalgarno DC, Klevit RE, Levine BA, Scott GMM, Williams RJP, Gergely J, Grabarek Z, Leavis PC, Grand RJA, Drabikowski W (1984) The nature of the trifluoperazine binding sites on calmodulin and troponin-C. Biochim Biophys Acta 791:164–172

    PubMed  CAS  Google Scholar 

  • Delville A, Grandjean J, Laszlo P, Gerday C, Brzeska H, Drabikowski W (1980) Sodium-23 nuclear magnetic resonance as an indicator of sodium binding to calmodulin and tryptic fragments, in relation to calcium content. Eur J Biochem 109:515–522

    PubMed  CAS  Google Scholar 

  • Drabikowski W, Brzeska H (1983) Proteolytic fragments in the study of calcium binding proteins. In: de Bernard B et al. (eds) Calcium-binding proteins. Elsevier, Amsterdam, pp 227–235

    Google Scholar 

  • Drabikowski W, Kuznicki J, Grabarek Z (1977) Similarity in Ca2+-induced changes between troponin-C and protein activator of 3′: 5′-cyclic nucleotide phosphodiesterase and their tryptic fragments. Biochim Biophys Acta 485:124–133

    PubMed  CAS  Google Scholar 

  • Drabikowski W, Brzeska H, Venyaminov SY (1982) Tryptic fragments of calmodulin. Ca2+- and Mg2+-induced conformational changes. J Biol Chem 257:11584–11590

    PubMed  CAS  Google Scholar 

  • Edelman AM, Takio K, Blumenthal DK, Hansen RS, Walsh KA, Titani K, Krebs EG (1985) Characterization of the calmodulin-binding and catalytic domains in skeletal muscle myosin light chain kinase. J Biol Chem 260:11275–11285

    PubMed  CAS  Google Scholar 

  • Endo T, Tanaka T, Isobe T, Kasai H, Okuyama T, Hidaka H (1981) Calcium-dependent affinity chromatography of S-100 and calmodulin on calmodulin antagonist-coupled sepharose. J Biol Chem 256:12485–12489

    PubMed  CAS  Google Scholar 

  • Faust FM, Slisz M, Jarrett HW (1987) Calmodulin in labelled at lysine-148 by a chemically reactive phenothiazine. J Biol Chem 262:1938–1941

    PubMed  CAS  Google Scholar 

  • Follenius A, Gerard D (1984) Fluorescence investigations of calmodulin hydrophobic sites. Biochem Biophys Res Commun 119:1154–1160

    PubMed  CAS  Google Scholar 

  • Forsén S, Thulin E, Drakenberg T, Krebs J, Seamon K (1980) A 113Cd NMR study of calmodulin and its interaction with calcium, magnesium and trifluoperazine. FEBS Lett 117:189–194

    PubMed  Google Scholar 

  • Forsén S, Vogel HJ, Drakenberg T (1986) Biophysical studies on calmodulin. In: Cheung WY (ed) Calcium and cell function, vol VI. Academic, New York, pp 113–157

    Google Scholar 

  • Fullmer CS, Edelstein S, Wasserman RH (1985) Lead-binding properties of intestinal calcium-binding proteins. J Biol Chem 260:6816–6819

    PubMed  CAS  Google Scholar 

  • Gariepy J, Hodges RS (1983) Localization of a trifluoperazine binding site on troponin C. Biochemistry 22:1586–1594

    PubMed  CAS  Google Scholar 

  • Giedroc DP, Puett D, Ling N, Staros JV (1983) Demonstration by covalent cross-linking of a specific interaction between β-endorphin and calmodulin. J Biol Chem 258:16–19

    PubMed  CAS  Google Scholar 

  • Giedroc DP, Sinha SK, Brew K, Puett D (1985 a) Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. J Biol Chem 260:13406–13413

    PubMed  CAS  Google Scholar 

  • Giedroc DP, Keravis TM, Staros JV, Ling N, Wells JN, Puett D (1985 b) Functional properties of covalent β-endorphin peptide/calmodulin complexes. Chlorpromazine binding and phosphodiesterase activation. Biochemistry 24:1203–1211

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Anderson WB (1982) Calcium-induced hydrophobic site on calmodulin, application for purification by phenyl-sepharose chromatography. Biochem Biophys Res Commun 104:830

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Anderson WB (1983) Calmodulin interacts with cyclic nucleotide phosphodiesterase and calcineurin by binding to a metal ion-independent hydrophobic region on these proteins. J Biol Chem 258:2405–2409

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Anderson WB (1984) The effects of chemical modification of calmodulin on Ca2+-induced exposure of a hydrophobic region. Biochim Biophys Acta 844:265–269

    Google Scholar 

  • Grand RJA, Perry SV (1980) The binding of calmodulin to myelin basic protein and his-tone H2B. Biochem J 189:227–240

    PubMed  CAS  Google Scholar 

  • Gregori L, Marriott D, West CM, Chau V (1985) Specific recognition of calmodulin from dictyostelium discoideum by the ATP, ubiquitin-dependent degradative pathway. J Biol Chem 260:5232–5235

    PubMed  CAS  Google Scholar 

  • Guerini D, Krebs J, Carafoli E (1984) Stimulation of the purified erythrocyte Ca2+-ATPase by tryptic fragments of calmodulin. J Biol Chem 259:15172–15177

    PubMed  CAS  Google Scholar 

  • Haiech J, Klee CB, Demaille JG (1981) Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stim-ulated enzymes. Biochemistry 20:3890–3897

    PubMed  CAS  Google Scholar 

  • Hart RC, Hice RE, Charbonneau H, Putnam-Evans C, Cormier MJ (1983) Preparation and properties of calcium-dependent resins with increased selectivity of calmodulin. Anal Biochem 135:208–220

    PubMed  CAS  Google Scholar 

  • Head JF, Masure HR, Kaminer B (1982) Identification and purification of a phenothiazine binding fragment from bovine brain calmodulin. FEBS Lett 137:71–74

    PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1985 a) Structure of the calcium regulatory muscle protein tro-ponin-C at 2.8 Å resolution. Nature 313:653–659

    PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1985 b) Common structural framework of the two Ca2+/Mg2+ binding loops of troponin C and other Ca2+ binding proteins. Biochemistry 24:5298–5302

    PubMed  CAS  Google Scholar 

  • Hidaka H, Asano M, Tanaka T (1981) Activity-structure relationship of calmodulin antagonists. Mol Pharmacol 20:571–578

    PubMed  CAS  Google Scholar 

  • Hiraoki T, Vogel HJ (1987) Structure and function of calcium-binding proteins. J Car-diovasc Pharmacol 10:514–531

    Google Scholar 

  • Hiraoki T, Vogel HJ (1987) Modification of methionine residues in proteins followed by NMR (to be published)

    Google Scholar 

  • Horrocks W De W, Sudnick DR (1981) Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc Chem Res 14:384–392

    CAS  Google Scholar 

  • Huang CH, Cau V, Chock PB, Wang JH, Sharma RK (1981) Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc Natl Acad Sci USA 78:871–874

    PubMed  CAS  Google Scholar 

  • Ikebe M, Inagaki M, Kanamura K, Hidaka H (1985) Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. J Biol Chem 256:4547–4550

    Google Scholar 

  • Ikura M, Hiraoki T, Hikichi K, Minowa O, Yagi K (1984) NMR studies on calmodulin: Ca2+-dependent spectral change of proteolytic fragments. Biochemistry 23:3124–3128

    CAS  Google Scholar 

  • Ikura M, Minowa O, Hikichi K (1985) Hydrogen bonding in the carboxyl-terminal half-fragment 78–148 of calmodulin as studied by two-dimensional nuclear magnetic resonance. Biochemistry 24:4264–4269

    PubMed  CAS  Google Scholar 

  • Inagaki M, Tanaka T, Hidaka H (1983) Calmodulin antagonists enhance calcium binding to calmodulin. Pharmacology 27:125–129

    PubMed  CAS  Google Scholar 

  • Iwasa Y, Iwasa T, Higashi K, Matsui K, Miyamoto E (1981) Modulation by phosphorylation of interaction between calmodulin and histones. FEBS Lett 133:95–98

    PubMed  CAS  Google Scholar 

  • Jackson AE, Puett D (1984) Specific acylation of calmodulin — synthesis and adduct formation with a fluorenyl-based spin label. J Biol Chem 259:14985–14992

    PubMed  CAS  Google Scholar 

  • Jamieson GA Jr, Vanaman TC (1979) Calcium-dependent affinity chromatography of calmodulin on an immobilized phenothiazine. Biochem Biophys Res Commun 90:1048–1056

    PubMed  CAS  Google Scholar 

  • Jarrett HW (1984) The synthesis and reaction of a specific affinity label for the hydrophobic drug-binding domains of calmodulin. J Biol Chem 259:10136–10144

    PubMed  CAS  Google Scholar 

  • Jarrett HW (1986) Response of three enzymes to oleic acid, trypsin and calmodulin chemically modified with a reactive phenothiazine. J Biol Chem 261:4967–4972

    PubMed  CAS  Google Scholar 

  • Johnson JD (1983) Allosteric interactions among drug binding sites on calmodulin. Biochem Biophys Res Commun 112:787–793

    PubMed  CAS  Google Scholar 

  • Johnson JD (1984) A calmodulin-like Ca2+ receptor in the Ca2+-channel. Biophys J 45:134–136

    PubMed  CAS  Google Scholar 

  • Johnson JD, Mills JS (1986) Calmodulin. Med Res Rev 6:341–363

    PubMed  CAS  Google Scholar 

  • Johnson JD, Wittenauer LA (1983) A fluorescent calmodulin that reports the binding of hydrophobic inhibitory ligands. Biochem J 211:473–479

    PubMed  CAS  Google Scholar 

  • Johnson JD, Wittenauer LA, Thulin E, Forsén S, Vogel HJ (1986) Localization of a felo-dipine (dihydropyridine) binding site on calmodulin. Biochemistry 25:2226–2231

    PubMed  CAS  Google Scholar 

  • Kemp BE, Pearson RB, Guerriero V, Bagchi IC, Means AR (1987) The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosub-strate sequence. J Biol Chem 262:2542–2548

    PubMed  CAS  Google Scholar 

  • Kilhoffer MC, Gerard D, Demaille JG (1980 a) Terbium binding to octopus calmodulin provides the complete sequence of ion binding. FEBS Lett 120:99–103

    PubMed  CAS  Google Scholar 

  • Kilhoffer MC, Demaille JG, Gerard D (1980 b) Terbium as a luminescent probe of calmodulin calcium-binding sites. FEBS Lett 116:269–272

    PubMed  CAS  Google Scholar 

  • Kincaid RL (1984) Preparation of an enzymatically active cross-linked complex between brain cyclic nucleotide phosphodiesterase and 3-(2-pyridyldithio)propionyl-substi-tuted calmodulin. Biochemistry 23:1143–1147

    PubMed  CAS  Google Scholar 

  • Kincaid RL, Stith-Coleman IE, Vaughan M (1985) Proteolytic activation of calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem 260:9009–9015

    PubMed  CAS  Google Scholar 

  • Klee CB, Vanaman TC (1982) Calmodulin. Adv Prot Chem 35:213–321

    CAS  Google Scholar 

  • Klevitt RE, Vanaman TC (1984) Azidotyrosylcalmodulin derivatives — specific probes for protein-binding domains. J Biol Chem 259:15414–15424

    Google Scholar 

  • Klevitt RE, Blumenthal DK, Wemmer DE, Krebs EG (1985) Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation. Biochemistry 24:8152–8157

    Google Scholar 

  • Krebs J, Carafoli E (1982) Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study. Eur J Biochem 124:619–627

    PubMed  CAS  Google Scholar 

  • Krebs J, Buerkler J, Guerini D, Brunner J, Carafoli E (1984) 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a hydrophobic, photoreactive probe, labels calmodulin and calmodulin fragments in a Ca2+-dependent way. Biochemistry 23:400–403

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1980) Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8:119–174

    PubMed  CAS  Google Scholar 

  • Kretsinger RH, Rudnick SE, Weissman LJ (1986) J Inorg Biochem 28:289–302

    PubMed  CAS  Google Scholar 

  • Kuznicki J, Grabarek Z, Brzeska H, Drabikowski W, Cohen P (1981) Stimulation of enzyme activities by fragments of calmodulin. FEBS Lett 130:141–145

    PubMed  CAS  Google Scholar 

  • LaPorte DC, Wierman BM, Storm DR (1980) Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19:3814–3819

    PubMed  CAS  Google Scholar 

  • Leavis PC, Rosenfeld SS, Gergely J, Grabarek Z, Drabikowski W (1978) Proteolytic fragments of troponin C. Localization of high and low affinity Ca2+ binding sites and interactions with troponin I and troponin T. J Biol Chem 253:5452–5459

    PubMed  CAS  Google Scholar 

  • Levin RM, Weiss B (1979) Binding of trifluoperazine to the calcium dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol 13:690–697

    Google Scholar 

  • Linse S, Drakenberg T, Forsén S (1986) Mastoparan binding induces a structural change affecting both the N-terminal and C-terminal domains of calmodulin. A 113Cd NMR study. FEBS Lett 199:28–32

    PubMed  CAS  Google Scholar 

  • Ljung B, Kjellstadt A, Oreback D (1987) Vascular versus myocardial selectivity of calcium antagonists as studied by concentration-time-effect relations. J Cardiovasc Pharmacol 10:534–539

    Google Scholar 

  • Lukas TJ, Marshak DR, Watterson DM (1985 a) Drug-protein interactions: isolation and characterization of covalent adducts of phenoxybenzamine and calmodulin. Biochemistry 24:151–157

    PubMed  CAS  Google Scholar 

  • Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM (1985) Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 25:1458–1464

    Google Scholar 

  • Malencik DA, Anderson SR (1982) Binding of simple peptides, hormones, and neurotransmitters by calmodulin. Biochemistry 21:3480–3486

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1983) Binding of hormones and neuropeptides by calmodulin. Biochemistry 22:1995–2001

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR (1984) Peptide binding by calmodulin and its proteolytic fragments and by troponin Ç. Biochemistry 23:2420–2428

    PubMed  CAS  Google Scholar 

  • Malencik DA, Huang T-S, Anderson SR (1982 a) Binding of protein kinase substrates by fluorescently labeled calmodulin. Biochem Biophys Res Commun 108:266–272

    PubMed  CAS  Google Scholar 

  • Malencik DA, Anderson SR, Bohnert JL, Shalitin Y (1982 b) Functional interactions between smooth muscle myosin light chain kinase and calmodulin. Biochemistry 21:4031–4039

    PubMed  CAS  Google Scholar 

  • Malencik DA, Scott JD, Fischer EH, Krebs EG, Anderson SR (1986) Association of calmodulin with peptide analogues of the inhibitory region of the heat stable protein inhibitor of adenosine cyclic 3′,5′-phosphate dependent protein kinase. Biochemistry 25:3502–3508

    PubMed  CAS  Google Scholar 

  • Manalan AS, Klee CB (1983 a) Interaction of calmodulin with its target proteins. Chem Scrip 21:137–142

    CAS  Google Scholar 

  • Manalan AS, Klee CB (1983 b) Activation of calcineurin by limited proteolysis. Proc Natl Acad Sci USA 80:4291–4295

    PubMed  CAS  Google Scholar 

  • Marshak DR, Lukas TJ, Watterson DM (1985) Drug-protein interactions: binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 24:144–150

    PubMed  CAS  Google Scholar 

  • Martin RB, Richardson FS (1979) Lanthanides as probes for calcium in biological systems. Quart Rev Biophys 12:181–209

    CAS  Google Scholar 

  • Martin SR, Bayley PM (1986) The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. Biochem J 238:485–490

    PubMed  CAS  Google Scholar 

  • Martin SR, Andersson-Teleman A, Bayley PM, Drakenberg T, Forsén S (1985) Kinetics of calcium dissociation from calmodulin and its tryptic fragments. A stopped-flow fluorescence study using Quin 2 reveals a two-domain structure. Eur J Biochem 151:543–550

    PubMed  CAS  Google Scholar 

  • Maulet Y, Cox JA (1983) Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 22:5680–5686

    PubMed  CAS  Google Scholar 

  • Mayr GW, Heilmeyer LMG Jr (1983 a) Shape and substructure of skeletal muscle myosin light chain kinase. Biochemistry 22:4316–4326

    PubMed  CAS  Google Scholar 

  • Mayr GW, Heilmeyer LMG Jr (1983 b) Phosphofructokinase is a calmodulin binding protein. FEBS Lett 159:51–57

    PubMed  CAS  Google Scholar 

  • McDowell L, Sanyal G, Prendergast FG (1984) Probable role of amphiphilicity in the binding of mastoparan to calmodulin. Biochemistry 24:2979–2984

    Google Scholar 

  • Mills JS, Johnson JD (1985) Metal ions as allosteric regulators of calmodulin. J Biol Chem 260:15100–15105

    PubMed  CAS  Google Scholar 

  • Mills JS, Bailey BL, Johnson JD (1985) Cooperativity among calmodulin’s drug binding sites. Biochemistry 24:4897–4902

    PubMed  CAS  Google Scholar 

  • Minowa O, Yagi K (1984) Calcium binding to tryptic fragments of calmodulin. J Biochem 96:1175–1182

    PubMed  CAS  Google Scholar 

  • Murphy KMM, Gould RJ, Largent BL, Snyder SH (1983) A unitary mechanism of calcium antagonist drug action. Proc Natl Acad Sci USA 80:860–864

    PubMed  CAS  Google Scholar 

  • Newton DL, Klee CB (1984) CAPP-calmodulin: a potent competitive inhibitor of calmodulin actions. FEBS Lett 165:269–272

    PubMed  CAS  Google Scholar 

  • Newton DL, Burke TR Jr, Rice KC, Klee CB (1983) Calcium ion dependent covalent modification of calmodulin with norchlorpromazine isothiocyanate. Biochemistry 22:5472–5476

    PubMed  CAS  Google Scholar 

  • Newton DL, Oldewurtel MD, Krinks MH, Shiloach J, Klee CB (1984) Agonist and antagonist properties of calmodulin fragments. J Biol Chem 259:4419–4426

    PubMed  CAS  Google Scholar 

  • Newton D, Klee C, Woodgett J, Cohen P (1985) Selective effects of CAPP-calmodulin on its target proteins. Biochim Biophys Acta 845:533–539

    PubMed  CAS  Google Scholar 

  • Ni W-C, Klee CB (1985) Selective affinity chromatography with calmodulin fragments coupled to sepharose. J Biol Chem 260:6974–6981

    PubMed  CAS  Google Scholar 

  • Norman JA, Drummond AH, Moser P (1979) Inhibition of calcium-dependent regulator stimulated phosphodiesterase activity by neuroleptic drugs is unrelated to their chemical efficacy. Mol Pharmacol 16:1089–1094

    PubMed  CAS  Google Scholar 

  • Olwin DD, Storm DR (1985) Calcium binding to complexes of calmodulin and calmodu-lin-binding proteins. Biochemistry 24:8081–8086

    PubMed  CAS  Google Scholar 

  • O’Neil KT, DeGrado WF (1985) A predicted structure of calmodulin suggests an electrostatic basis for its function. Proc Natl Acad Sci USA 82:4954–4958

    PubMed  Google Scholar 

  • Putkey JA, Slaughter GR, Means AR (1985) Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J Biol Chem 260:4704–4712

    PubMed  CAS  Google Scholar 

  • Putkey JA, Draetta GF, Slaughter GR, Klee CB, Cohen P, Stull JT, Means AR (1986) Genetically engineered calmodulins differentially activate target enzymes. J Biol Chem 261:9896–9903

    PubMed  CAS  Google Scholar 

  • Rasmussen H (1983) Cellular calcium metabolism. Ann Intern Med 98:809–816

    PubMed  CAS  Google Scholar 

  • Roberts DM, Crea R, Malecha M, Alvarado-Urbina G, Chiarello RH, Watterson DM (1985) Chemical synthesis and expression of a calmodulin gene designed for site-specific mutagenesis. Biochemistry 24:5090–5098

    PubMed  CAS  Google Scholar 

  • Roufogalis BD (1981) Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem Biophys Res Commun 98:607–613

    PubMed  CAS  Google Scholar 

  • Schatzman RC, Raynor RL, Kuo JF (1983) N-(6-aminohexyl)-5-chloro-l-naphthalenesul-fonamide(W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim Biophys Acta 755:144–147

    PubMed  CAS  Google Scholar 

  • Schiffer M, Edmundson AB (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J 7:121–128

    PubMed  CAS  Google Scholar 

  • Schwartz MA, Das OP, Hynes RO (1982) A new radioactive cross-linking reagent for studying the interactions of proteins. J Biol Chem 257:2343–2349

    PubMed  CAS  Google Scholar 

  • Seamon KB (1980) Calcium and magnesium dependent conformational states of calmodulin as determined by NMR. Biochemistry 19:207–215

    PubMed  CAS  Google Scholar 

  • Seaton BA, Head JF, Engelman DM, Richards FM (1985) Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry 24:6740–6743

    PubMed  CAS  Google Scholar 

  • Sellinger-Barnette M, Weiss B (1981) Interaction of β-endorphin and other opioid peptides with calmodulin. Mol Pharmacol 21:86–91

    Google Scholar 

  • Sobue K, Muramoto Y, Fujita M, Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 78:5652–5655

    PubMed  CAS  Google Scholar 

  • Solaro RJ, Bousquet P, Johnson JD (1986) Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca2+ binding by bepridil. J Pharmacol Exp Ther 238:502–507

    PubMed  CAS  Google Scholar 

  • Steiner RF (1984) Location of a binding site for l-anilinaphthalene-8-sulfonate on calmodulin. Arch Biochem Biophys 228:105–112

    PubMed  CAS  Google Scholar 

  • Steiner RF, Marshall L (1985) Sites of interaction of calmodulin with trifluoperazine and glucagon. Arch Biochem Biophys 240:297–311

    PubMed  CAS  Google Scholar 

  • Steiner RF, Marshall L, Needleman D (1986) The interaction of melittin with its tryptic fragments. Arch Biochem Biophys 246:286–300

    PubMed  CAS  Google Scholar 

  • Suko J, Wyskovsky W, Pidlich J, Hamptner R, Plank B, Helmann G (1986) Calcium release from calmodulin antagonists phenoxybenzamine and melittin measured by stop-ped-flow fluorescence with Quin-2 and intrinsic fluorescence. Eur J Biochem 159:425–434

    PubMed  CAS  Google Scholar 

  • Sundralingam M, Bergstrom R, Strasburg G, Rao ST, Roychowdhury P, Greaser M, Wang BC (1985 a) Molecular structure of troponin C from chicken skeletal muscle at 3 angstrom resolution. Science 227:945–948

    Google Scholar 

  • Sundralingam M, Drendel W, Greaser M (1985 b) Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains. Proc Natl Acad Sci USA 82:7944–7947

    Google Scholar 

  • Szebenyi DHE, Ohlendorf SK, Moffat K (1981) Structure of the vitamin D dependent calcium binding protein from bovine intestine. Nature 294:327–332

    PubMed  CAS  Google Scholar 

  • Tallant EA, Cheung WY (1984) Activation of bovine brain calmodulin-dependent protein phosphatase by limited trypsinization. Biochemistry 23:973–979

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hidaka H (1980) Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem 255:11078–11080

    PubMed  CAS  Google Scholar 

  • Tanaka T, Ohmura T, Hidaka H (1983) Calmodulin antagonists’ binding sites on calmodulin. Pharmacology 26:249–257

    PubMed  CAS  Google Scholar 

  • Tanaka T, Umekawa H, Ohmura T, Hidaka H (1984) Calcium-dependent hydrophobic chromatography of calmodulin, S-100 protein and troponin-C. Biochim Biophys Acta 787:158–164

    PubMed  CAS  Google Scholar 

  • Tanokura M, Yamada K (1985) Effects of trifluoperazine on calcium binding by calmodulin — a microcalorimetric study. J Biol Chem 260:8680–8682

    PubMed  CAS  Google Scholar 

  • Teleman A, Drakenberg T, Forsén S (1986) Kinetics of calcium binding to calmodulin and its tryptic fragments studied by calcium-43 NMR. Biochim Biophys Acta 873:204–213

    PubMed  CAS  Google Scholar 

  • Thulin E, Andersson A, Drakenberg T, Forsén S, Vogel HJ (1984) Metal ion and drug binding to proteolytic fragments of calmodulin: proteolytic, cadmium-113, and proton nuclear magnetic resonance studies. Biochemistry 23:1862–1870

    PubMed  CAS  Google Scholar 

  • Tsalkova TN, Privalov P (1985) Thermodynamic study of domain organization in troponin C and calmodulin. J Mol Biol 181:533–544

    PubMed  CAS  Google Scholar 

  • Vanaman TC (1981) Structure, function and evolution of calmodulin. In: Cheung WY (ed) Calcium and cell function, vol II. Academic, New York, pp 41–57

    Google Scholar 

  • Van Belle H (1981) R 24 571: a potent inhibitor of calmodulin-activated enzymes. Cell Calcium 2:483–494

    Google Scholar 

  • Villar-Palasi C, Oshiro DL, Kretsinger RH (1983) Interaction of calmodulin and glycogen Phosphorylase. Biochim Biophys Acta 757:40–46

    PubMed  CAS  Google Scholar 

  • Vogel HJ, Forsén S (1987) NMR studies of calcium binding proteins. In: Berliner LJ (ed) Biological magnetic resonance, vol VII. Plenum, New York

    Google Scholar 

  • Vogel HJ, Lindahl L, Thulin E (1983 a) Calcium-dependent hydrophobic interaction chromatography of calmodulin, troponin C and their proteolytic fragments. FEBS Lett 157:241–246

    CAS  Google Scholar 

  • Vogel HJ, Drakenberg T, Forsén S (1983 b) Calcium binding proteins. In: Laszlo P (ed) NMR of newly accessible nuclei. Academic, New York, pp 157–192

    Google Scholar 

  • Vogel HJ, Andersson T, Braunlin WH, Drakenberg T, Forsén S (1984) Trifluoperazine binding to calmodulin: a shift reagent 43Ca NMR study. Biochem Biophys Res Commun 122:1350–1356

    PubMed  CAS  Google Scholar 

  • Vogel HJ, Drakenberg T, Forsén S, O’Neill JDG, Hofmann J (1985) Structural differences in the two calcium-binding sites of the porcine intestinal calcium binding protein: a multinuclear NMR study. Biochemistry 24:3870–3876

    PubMed  CAS  Google Scholar 

  • Vogel HJ, Rochester S, Johnson JD (1987) Localization of a melittin binding site on calmodulin (to be published)

    Google Scholar 

  • Wallace RA, Tallant EA, Dockter ME, Cheung WY (1982) Calcium binding domains of calmodulin. J Biol Chem 257:1845–1854

    PubMed  CAS  Google Scholar 

  • Walsh M, Stevens FC (1977) Chemical modification studies on the Ca2+-dependent protein modulator of cyclic nucleotide phosphodiesterase. Biochemistry 16:2742–2749

    PubMed  CAS  Google Scholar 

  • Walsh M, Stevens FC (1978) Chemical modification studies on the Ca2+-dependent protein modulator: the role of methionine residues in the activation of cyclic nucleotide phosphodiesterase. Biochemistry 17:3924–3930

    PubMed  CAS  Google Scholar 

  • Walsh M, Stevens FC, Kuznicki J, Drabikowski W (1977) Characterization of tryptic fragments obtained from bovine brain protein modulator of cyclic nucleotide phosphodiesterase. J Biol Chem 252:7440–7443

    PubMed  CAS  Google Scholar 

  • Walsh MP, Dabrowska R, Hinkins S, Hartshore DJ (1982) Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification, and characterization. Biochemistry 21:1919–1925

    PubMed  CAS  Google Scholar 

  • Wang C-L (1985) A note on Ca2+ binding to calmodulin. Biochem Biophys Res Commun 130:426–430

    PubMed  CAS  Google Scholar 

  • Wang C-L, Leavis PC, Horrocks W DeW Jr, Gergely J (1981) Binding of lanthanide ions to troponin C. Biochemistry 20:2439–2444

    PubMed  CAS  Google Scholar 

  • Wang CLA, Aquaron RR, Leavis PC, Gergely J (1982) Metal-binding properties of calmodulin. Eur J Biochem 124:7–12

    PubMed  CAS  Google Scholar 

  • Wang CLA, Leavis PC, Gergely J (1984) Kinetic studies show that Ca2+ and Tb3+ have different binding preferences towards the four Ca2+-binding sites of calmodulin. Biochemistry 23:4

    Google Scholar 

  • Weiss B, Fertel R, Figlin R, Uzunov P (1974) Selective alteration of the multiple forms of phosphodiesterase of rat cerebrum. Mol Pharmacol 10:615–625

    CAS  Google Scholar 

  • Yoshida M, Minowa O, Yagi K (1983) Divalent cation binding to wheat germ calmodulin. J Biochem (Tokyo) 94:1925–1933

    CAS  Google Scholar 

  • Zimmer M, Hofmann F (1984) Calmodulin antagonists inhibit activity of myosin light-chain kinase independent of calmodulin. Eur J Biochem 142:393–397

    PubMed  CAS  Google Scholar 

  • Zimmer M, Hofmann F (1987) Differentiation of the drug-binding sites of calmodulin. Eur J Biochem 164:411–420

    PubMed  CAS  Google Scholar 

  • Zurini M, Krebs J, Penniston JT, Carafoli E (1984) Activation of the plasma-membrane Ca2+-ATPase by limited proteolysis. J Biol Chem 259:618–627

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.J. (1988). Ligand-Binding Sites on Calmodulin. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics