Skip to main content

Calcium and Synaptic Function

  • Chapter
Calcium in Drug Actions

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 83))

Abstract

Calcium ions play many important roles in the function of nerve cells. Calcium’s involvement in neurotransmitter release is one of its key roles, and was one of the first to be recognized. Early observations demonstrated that extracellular Ca was required for neurotransmitter release (Harvey and Macintosh 1940). Subsequent studies established that transmitter release was evoked by Ca entry and a rise in [Ca2+]i, the intracellular free Ca concentration. This sequence of events accounted for the external Ca dependence (Katz 1969; Baker 1972; Llinas et al. 1981; Drapeau and Blaustein 1983 a, b). Moreover, the modulation of synaptic transmission, and related fundamental aspects of transmitter release associated with memory and learning, are all profoundly influenced by Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Miledi R (1978) Inhibition of β-bungarotoxin action by bee venom phospholipase A2. Proc R Soc Lond B 200:225–230

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Vandermaelen CP, Andrade R (1983) Intracellular studies on the role of calcium in regulating the activity and reactivity of locus coeruleus neurons in vivo. Brain Res 273:237–243

    PubMed  CAS  Google Scholar 

  • Allen TJA, Baker PF (1986) Influence of membrane potential on calcium efflux from giant axons of Loligo. J Physiol (Lond) 378:77–96

    CAS  Google Scholar 

  • Alvarez-Leefmans FJ, Gamino SM, Rink TJ (1984) Intracellular free magnesium in neurones of Helix aspersa measured with ion-selective micro-electrodes. J Physiol (Lond) 354:303–317

    CAS  Google Scholar 

  • Atwood HL, Charlton MP, Thompson CS (1983) Neuromuscular transmission in crustaceans is enhanced by a sodium ionophore, monensin, and by prolonged stimulation. J Physiol (Lond) 335:179–195

    CAS  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1985) Calcium entry and transmitter release at voltage-clamped nerve terminals of squid. J Physiol (Lond) 367:163–181

    CAS  Google Scholar 

  • Bailey CH, Chen M (1983) Morphological basis of long-term habituation and sensitization in Aplysia. Science 220:91–93

    PubMed  CAS  Google Scholar 

  • Baker PF (1972) Transport and metabolism by calcium ions in nerve. Prog Biophys Mol Biol 24:177–223

    PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Phil Trans R Soc Lond B 296:83–103

    CAS  Google Scholar 

  • Baraban JM, Snyder SH, Alger BE (1985) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc Natl Acad Sci USA 82:2538–2542

    PubMed  CAS  Google Scholar 

  • Bartschat DK, Blaustein MP (1985) Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain. J Physiol (Lond) 361:441–457

    CAS  Google Scholar 

  • Bartschat DK, Blaustein MP (1986) Phencyclidine in low doses selectively blocks a presynaptic voltage-regulated potassium channel in rat brain. Proc Natl Acad Sci USA 83:189–492

    PubMed  CAS  Google Scholar 

  • Bartschat DK, French RJ, Nairn AC, Greengard P, Krueger BK (1986) Cyclic AMP-dependent protein kinase modulation of single calcium-activated potassium channels from rat brain in planar bilayers. Soc Neurosci Abstr 12:1198

    Google Scholar 

  • Benishin CG, Krueger BK, Blaustein MP (1986) Low micromolar concentrations of phenothiazines and haloperidol selectively block Ca-activated K channels in rat brain synaptosomes. Soc Neurosci Abstr 12:1199

    Google Scholar 

  • Berl S, Puszkin S, Nicklas WJ (1973) Actomyosin-like protein in brain. Science 179:441–446

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Bigalke H, Ahnert-Hilger G, Habermann E (1981) Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Naunyn-Schmiedebergs Arch Pharmacol 316:143–148

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:32–82

    Google Scholar 

  • Blaustein MP (1977) Effects of internal and external cations and of ATP on sodium-calcium exchange in squid axons. Biophys J 20:79–111

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1978) The role of calcium in catecholamine release from adrenergic nerve terminals. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon, Oxford, pp 39–58

    Google Scholar 

  • Blaustein MP (1984) The energetics and kinetics of sodium-calcium exchange in barnacle muscles, squid axons and mammalian heart: the role of ATP. In: Blaustein MP, Lieberman M (eds) Electrogenic transport: fundamental principles and physiological implications. Raven, New York, pp 129–147

    Google Scholar 

  • Blaustein MP (1985) Intracellular calcium as a second messenger. What’s so special about calcium? In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems. Plenum, New York, pp 23–33

    Google Scholar 

  • Blaustein MP (1987) Neuronal cell calcium. In: Nordin BEC (ed) Calcium in human biology. Springer, Berlin Heidelberg New York (Human nutrition reviews, to be published)

    Google Scholar 

  • Blaustein MP, Rasgado-Flores H (1981) The control of cytoplasmic free calcium in presynaptic nerve terminals. In: Bronner F, Peterlik M (eds) Calcium and phosphate transport across biomembranes. Academic, New York, pp 53–58

    Google Scholar 

  • Blaustein MP, Russell JM (1975) Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membrane Biol 22:285–312

    CAS  Google Scholar 

  • Blaustein MP, Russell JM, De Weer P (1974) Calcium efflux from internally dialyzed squid axons: the influence of external and internal cations. J Supermolec Structure 2:558–581

    CAS  Google Scholar 

  • Blaustein MP, Ratzlaff RW, Schweitzer ES (1978) Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the non-mitochondrial Ca sequestration mechanism. J Gen Physiol 72:43–66

    PubMed  CAS  Google Scholar 

  • Blaustein MP, McCraw CF, Somlyo AV, Schweitzer ES (1980) How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 76:459–470

    CAS  Google Scholar 

  • Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurements of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40:1–114

    PubMed  CAS  Google Scholar 

  • Bolsover SR, Spector I (1986) Measurements of calcium transients in the soma, neurite, and growth cone of single cultured neurons. J Neurosci 6:1934–1940

    PubMed  CAS  Google Scholar 

  • Bossu JL, Feltz A, Thomann JM (1985) Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflugers Arch 403:360–368

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540

    PubMed  CAS  Google Scholar 

  • Burgoyne RD (1984) Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta 779:201–216

    PubMed  CAS  Google Scholar 

  • Burke BE, DeLorenzo RJ (1982) Ca2+- and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system. J Neurochem 38:1205–1218

    PubMed  CAS  Google Scholar 

  • Carafoli E (1984) Plasma membrane Ca2+ transport, and Ca2+ handling by intracellular stores: an integrated picture with emphasis on regulation. In: Donowitz M, Sharp GWG (eds) Mechanisms of intestinal electrolyte transport and regulation by calcium. Liss, New York, pp 121–134

    Google Scholar 

  • Celio MR (1986) Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997

    PubMed  CAS  Google Scholar 

  • Charlton MP, Atwood HL (1977) Modulation of transmitter release by intracellular sodium in squid giant synapse. Brain Res 134:367–371

    PubMed  CAS  Google Scholar 

  • Charlton MP, Thompson CS, Atwood HL, Farnell B (1980) Synaptic transmission and intracellular sodium loading of nerve terminals. Neurosci Letters 16:193–196

    CAS  Google Scholar 

  • Chueh S-H, Gill DL (1986) Inositol 1,4,5-triphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem 261:13883–13886

    PubMed  CAS  Google Scholar 

  • Connor J (1986) Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc Natl Acad Sci USA 83:6179–6183

    PubMed  CAS  Google Scholar 

  • Connor JA, Kretz R, Shapiro E (1986) Calcium levels measured in a presynaptic neurone of Aplysia under conditions that modulate transmitter release. J Physiol (Lond) 375:625–642

    CAS  Google Scholar 

  • Conway AK (1983) Intracellular calcium. Its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Crabb JH, Jackson RC (1985) In vitro reconstitution of exocytosis from plasma membrane and isolated secretory vesicles. J Cell Biol 101:2263–2273

    PubMed  CAS  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychological Bull 96:518–559

    CAS  Google Scholar 

  • DeLorenzo RJ (1982) Calmodulin in neurotransmitter release and synaptic function. Fed Proc 41:2265–2272

    PubMed  CAS  Google Scholar 

  • DeLorenzo RJ (1983) Calcium-calmodulin systems in psychopharmacology and synaptic modulation. Psychopharmacol Bull 19:393–397

    PubMed  CAS  Google Scholar 

  • Denton RM, McCormack JG (1985) Physiological role of Ca2+ transport by mitochondria. Nature 315:635

    PubMed  CAS  Google Scholar 

  • De Peyer JE, Cachelin AB, Levitan IB, Reuter H (1982) Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation. Proc Natl Acad Sci USA 79:4207–4211

    PubMed  Google Scholar 

  • De Weer P (1976) Axoplasmic free magnesium levels and magnesium extrusion from squid giant axons. J Gen Physiol 68:159–178

    PubMed  Google Scholar 

  • DiPolo R, Beauge L (1986) Reverse Na/Ca exchange requires internal Ca and/or ATP in squid axons. Biochim Biophys Acta 854:298–306

    CAS  Google Scholar 

  • Dodge F, Rahamimoff R (1967) Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol (Lond) 193:419–432

    CAS  Google Scholar 

  • Dolly JO, Halliwell JV, Black JD, Williams RS, Pelchen-Matthews A, Breeze AL, Meheraban F, Othman IB, Black AR (1984) Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release. J Physiol (Paris) 79:280–303

    CAS  Google Scholar 

  • Douglas WW (1974) Involvement of calcium in exocytosis and the exocytosis vesiculation sequence. Biochem Soc Symp 39:1–28

    PubMed  CAS  Google Scholar 

  • Drapeau P, Blaustein MP (1983 a) Initial release of 3H-dopamine from rat striatal synaptosomes: correlation with Ca entry. J Neurosci 3:703–713

    PubMed  CAS  Google Scholar 

  • Drapeau P, Blaustein MP (1983 b) Calcium and neurotransmitter release: what we know and don’t know. In: Kalsner S (ed) Trends in autonomic pharmacology, vol 2. Urban and Schwarzenberg, Baltimore, pp 117–130

    Google Scholar 

  • Drapeau P, Nachshen DA (1984) Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings from rat brain. J Physiol (Lond) 348:493–510

    CAS  Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    PubMed  CAS  Google Scholar 

  • Eusebi F, Miledi R, Parker I, Stinnakre J (1985) Post-synaptic calcium influx at the giant synapse of the squid during activation by glutamate. J Physiol (Lond) 369:183–197

    CAS  Google Scholar 

  • Ewald DA, Williams A, Levitan IB (1985) Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature 315:503–506

    PubMed  CAS  Google Scholar 

  • Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac Purkinje cell. J Gen Physiol 85:247–289

    PubMed  CAS  Google Scholar 

  • Farley J, Auerbach S (1986) Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature 319:220–223

    PubMed  CAS  Google Scholar 

  • Feasey KJ, Lynch MA, Bliss TVB (1986) Long-term potentiation is associated with an increase in calcium-dependent, potassium-stimulated release of [14C]glutamate from hippocampal slices: an ex vivo study in the rat. Brain Res 364:39–44

    PubMed  CAS  Google Scholar 

  • Fleckenstein A (1985) Calcium antagonism in heart and vascular smooth muscle. Medicinal Res Rev 5:395–425

    CAS  Google Scholar 

  • Flexner JB, Flexner LB, Stellar E (1963) Memory in mice as affected by intracerebral puromycin. Science 141:57–59

    PubMed  CAS  Google Scholar 

  • Flockerzi V, Oeken H-J, Hofmann F, Pelzer D, Cavalie A, Trautwein W (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional sodium channel. Nature 323:66–68

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser B (1957) The effect of calcium on the myelinated nerve fibre. J Physiol (Lond) 137:245–260

    CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol (Lond) 137:218–244

    CAS  Google Scholar 

  • Gill DL, Grollman EF, Kohn LD (1981) Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes. J Biol Chem 256:184–192

    PubMed  CAS  Google Scholar 

  • Gill DL, Chueh S-H, Noel MW, Ueda T (1986 a) Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities. Biochim Biophys Acta 856:165–173

    PubMed  CAS  Google Scholar 

  • Gill DL, Ueda T, Chueh S-H (1986 b) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320:461–464

    PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-regulated signals. Ann Rev Biochem 56:615–649

    PubMed  CAS  Google Scholar 

  • Goelet P, Kandel E (1986) Tracking the flow of learned information from membrane receptors to genome. Trends Neurosci 9:492–499

    CAS  Google Scholar 

  • Goelet P, Castellucci V, Schacher S, Kandel ER (1986) The long and the short of long-term memory — a molecular framework. Nature 322:419–422

    PubMed  CAS  Google Scholar 

  • Gorman ALF, Hermann A (1982) Quantitative differences in the currents of bursting and beating molluscan pace-maker neurones. J Physiol (Lond) 333:681–699

    CAS  Google Scholar 

  • Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83

    PubMed  CAS  Google Scholar 

  • Greenough WT (1984) Possible structural substrates of plastic neuronal phenomena. In: Lynch G, McGaugh JL, Weinberger NM (eds) Neurobiology of learning and memory. Guilford, New York, pp 470–478

    Google Scholar 

  • Hagiwara S, Byerly L (1981) Calcium channel. Ann Rev Neurosci 4:69–125

    PubMed  CAS  Google Scholar 

  • Hansford RG (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102:1–72

    PubMed  CAS  Google Scholar 

  • Hartzeil HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275

    Google Scholar 

  • Harvey AM, Macintosh FC (1940) Calcium and synaptic transmission in a sympathetic ganglion. J Physiol (Lond) 97:408–416

    CAS  Google Scholar 

  • Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H (1986) Inositol 1,4,5-triphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol (Lond) 370:605–618

    CAS  Google Scholar 

  • Hasselbach W (1977) The sarcoplasmic reticulum calcium pump — a most efficient ion translocating system. Biophys Struct Mechanism 3:43–54

    CAS  Google Scholar 

  • Heinonen E, Akerman KEO (1986) Measurement of cytoplasmic, free magnesium concentration with entrapped eriochrome blue in nerve endings isolated from the guinea pig brain. Neurosci Lett 72:105–110

    PubMed  CAS  Google Scholar 

  • Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein; distribution, properties and possible roles in mammalian cells. Experientia 40:910–921

    PubMed  CAS  Google Scholar 

  • Heuser JE (1977) Synaptic vesicle exocytosis revealed in quick-frozen frog neuromuscular junctions treated with 4-aminopyridine and given a single electric shock. In: Cowan WM, Ferendelli JA (eds) Approaches to the cell biology of neurons. Society for Neuroscience symposia, vol 2. Society for Neuroscience, Bethesda, pp 215–239

    Google Scholar 

  • Heuser J, Katz B, Miledi R (1971) Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proc R Soc Lond B 178:407–415

    PubMed  CAS  Google Scholar 

  • Higashi H, Morita K, North RA (1984) Calcium-dependent after potentials in visceral afferent neurones of the rabbit. J Physiol (Lond) 355:479–492

    CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable cells. Sinauer, Boston

    Google Scholar 

  • Hincke MT, Demaille JG (1984) Calmodulin regulation of the ATP-dependent calcium uptake by inverted vesicles prepared from rabbit synaptosomal plasma membranes. Biochim Biophys Acta 771:188–194

    PubMed  CAS  Google Scholar 

  • Holz GG, Rane SG, Dunlap K (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672

    PubMed  CAS  Google Scholar 

  • Hutson SM, Pfeifer DR, Lardy HA (1976) Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem 251:5251–5258

    PubMed  CAS  Google Scholar 

  • Inesi G (1985) Mechanism of calcium transport. Ann Rev Physiol 47:573–601

    CAS  Google Scholar 

  • Inoue M, Oomura Y, Yakushiji T, Akaike N (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–158

    PubMed  CAS  Google Scholar 

  • Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflugers Arch 407:123–128

    PubMed  CAS  Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Thomas, Springfield

    Google Scholar 

  • Katz B, Miledi R (1967) A study of synaptic transmission in the absence of nerve impulses. J Physiol (Lond) 192:407–436

    CAS  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol (Lond) 195:481–492

    CAS  Google Scholar 

  • Katz B, Miledi R (1969) Tetrodotoxin-resistant electrical activity in presynaptic terminals. J Physiol (Lond) 203:459–487

    CAS  Google Scholar 

  • Kimura J, Noma A, Irisawa H (1986) Na-Ca exchange current in mammalian heart cells. Nature 319:596–598

    PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membrane Biol 68:107–440

    CAS  Google Scholar 

  • Knight DE, Baker PF (1985) Guanine nucleotides and Ca-dependent exocytosis. Studies on two adrenal cell preparations. FEBS Lett 189:345–349

    PubMed  CAS  Google Scholar 

  • Knight DE, Tonge DA, Baker PF (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317:719–721

    PubMed  CAS  Google Scholar 

  • Kostyuk PG (1981) Calcium channels in the neuronal membrane. Biochim Biophys Acta 650:128–450

    PubMed  CAS  Google Scholar 

  • Kretz R, Shapira E, Kandel ER (1982) Post-tetanic potentiation at an identified synapse in Aplysia is correlated with a Ca2+-activated K+ current in the presynaptic neuron: evidence for Ca2+ accumulation. Proc Natl Acad Sci USA 79:5430–5434

    PubMed  CAS  Google Scholar 

  • Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:1268–1282

    PubMed  CAS  Google Scholar 

  • Levitan IB (1985) Phosphorylation of ion channels. J Membrane Biol 87:177–190

    CAS  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 33:323–352

    PubMed  CAS  Google Scholar 

  • Lnenicka GA, Atwood HL, Marin L (1986) Morphologic transformation of synaptic terminals of a phasic motoneuron by long-term tonic stimulation. J Neurosci 6:2252–2258

    PubMed  CAS  Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–4063

    PubMed  CAS  Google Scholar 

  • Malenka RC, Madison DV, Nicoll RA (1986) Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321:175–177

    PubMed  CAS  Google Scholar 

  • Mallart A (1984) Calcium-activated potassium current in presynaptic terminals. Biomed Res 5:287–290

    CAS  Google Scholar 

  • McCormack JG, Denton RM (1986) Ca2+ as a second messenger within mitochondria. Trends Biochem Sci (TIBS) 11:258–262

    CAS  Google Scholar 

  • Meech RW (1972) Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A 42A:493–499

    Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Ann Rev Biophys Bioeng 7:1–18

    CAS  Google Scholar 

  • Meiri H, Zellingher J, Rahamimoff R (1986) A possible involvement of the Na-Ca exchanger in regulation of transmitter release at the frog neuromuscular junction. In: Rahamimoff R, Katz B (eds) Calcium, neuronal function and transmitter release. Nijhoff, Amsterdam, pp 239–254

    Google Scholar 

  • Miledi R, Parker I, Schalow G (1980) Transmitter induced calcium entry across postsynaptic membrane at frog end-plates measured using arsenazo III. J Physiol (Lond) 300:197–212

    CAS  Google Scholar 

  • Miller SG, Kennedy MB (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44:861–870

    PubMed  CAS  Google Scholar 

  • Misler S, Hurlbut WP (1983) Post-tetanic potentiation of acetylcholine release at the frog neuromuscular junction develops after stimulation in Ca2+-free solutions. Proc Natl Acad Sci USA 80:315–319

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322:552–555

    PubMed  CAS  Google Scholar 

  • Mullins LJ, Brinley FJ Jr (1975) Sensitivity of calcium efflux from squid axons to changes in membrane potential. J Gen Physiol 65:135–152

    PubMed  CAS  Google Scholar 

  • Nachshen DA (1984) Selectivity of the Ca binding site in synaptosome Ca channels. J Gen Physiol 83:941–967

    PubMed  CAS  Google Scholar 

  • Nachshen DA (1985) The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals from rat brains. J Physiol (Lond) 361:251–268

    CAS  Google Scholar 

  • Nachshen DA, Blaustein MP (1979) The effects of some organic “calcium antagonists” on calcium influx in presynaptic nerve terminals. Molec Pharmacol 16:579–586

    CAS  Google Scholar 

  • Nachshen DA, Blaustein MP (1980) Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J Gen Physiol 76:709–728

    PubMed  CAS  Google Scholar 

  • Nachshen DA, Blaustein MP (1982) The influx of calcium, strontium and barium in presynaptic nerve endings. J Gen Physiol 79:1065–1087

    PubMed  CAS  Google Scholar 

  • Nachshen DA, Drapeau P (1982) A buffering model for calcium-dependent neurotransmitter release. Biophys J 38:205–208

    PubMed  CAS  Google Scholar 

  • Nachshen DA, Sanchez-Armass S, Weinstein AM (1986) The regulation of cytosolic calcium in rat brain synaptosomes by sodium-dependent calcium efflux. J Physiol (Lond) 381:17–28

    CAS  Google Scholar 

  • Nairn AC, Hemmings HC Jr, Greengard P (1985) Protein kinases in the brain. Annu Rev Biochem 54:931–976

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Rugolo M, Scott IG, Meldolesi J (1982) α-Latrotoxin of black widow spider venom depolarizes the plasma membrane, induces massive calcium influx, and stimulates transmitter release in guinea pig brain synaptosomes. Proc Natl Acad Sci USA 79:7924–7928

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    PubMed  CAS  Google Scholar 

  • Oberg SG, Kelly RB (1976) The mechanism of β-bungarotoxin action. I. Modification of transmitter release at the neuromuscular junction. J Neurobiol 7:129–141

    PubMed  CAS  Google Scholar 

  • Parsegian VA (1977) Considerations in determining the mode of influence of calcium on vesicle membrane interaction. In: Cowan WM, Ferendelli JA (eds) Approaches to the cell biology of neurons. Society for Neuroscience symposia, vol 2. Society for Neuroscience, Bethesda, pp 161–171

    Google Scholar 

  • Paupardin-Tritsch D, Hammond C, Gerschenfeld HM, Nairn AC, Greengard P (1986) cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323:812–814

    PubMed  CAS  Google Scholar 

  • Pechere J-F, Derancourt J, Haiech J (1977) The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal muscle. FEBS Lett 75:111–114

    PubMed  CAS  Google Scholar 

  • Pellmar TC (1981) Ionic mechanism of a voltage dependent current elicited by cyclic AMP. Cell Molec Neurobiol 1:87–97

    PubMed  CAS  Google Scholar 

  • Pennefather P, Lancaster B, Adams PR, Nicoll RA (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci USA 82:3040–3044

    PubMed  CAS  Google Scholar 

  • Petersen M, Penner R, Pierau Fr-K, Dreyer F (1986) β-Bungarotoxin inhibits a non-inactivating potassium current in guinea pig dorsal root ganglion neurones. Neurosci Lett 68:141–145

    PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    PubMed  CAS  Google Scholar 

  • Pochet R, Parmentier M, Lawson DEM, Pasteeis JL (1985) Rat brain synthesizes two “vitamin D-dependent” calcium-binding proteins. Brain Res 345:251–256

    PubMed  CAS  Google Scholar 

  • Pumplin DW, Reese TS (1977) Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze fracture technique. J Physiol (Lond) 273:443–457

    CAS  Google Scholar 

  • Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons. Proc Natl Acad Sci USA 83:184–188

    PubMed  CAS  Google Scholar 

  • Rasgado-Flores H, Blaustein MP (1987 a) ATP-dependent regulation of cytoplasmic free Ca2+ in nerve terminals. Am J Physiol 252 (Cell Physiol 21) C588–C594

    PubMed  CAS  Google Scholar 

  • Rasgado-Flores H, Blaustein MP (1987 b) Na/Ca exchange in barnacle muscle cells has a stoichiometry of 3 Na+: 1 Ca2+. Am J Physiol 252 (Cell Physiol 21) C499–C504

    PubMed  CAS  Google Scholar 

  • Rasgado-Flores H, Santiago EM, Blaustein MP (1986) Calcium influx and sodium efflux mediated by the Na/Ca exchanger in giant barnacle muscle cells are promoted by intracellular Ca2+. Biophys J 49:546a

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    PubMed  CAS  Google Scholar 

  • Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ (1986) Brain voltage-sensitive calcium channel subtypes differentiated by ω-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:8804–8807

    PubMed  CAS  Google Scholar 

  • Robello M, Rolandi R, Alema S, Grasso A (1984) trans-Bilayer orientation and voltage-dependence of α-latrotoxin-induced channels. Proc R Soc Lond B 220:477–487

    CAS  Google Scholar 

  • Rosengurt E (1986) Early signals in the mitogenic response. Science 234:161–166

    Google Scholar 

  • Ross WN, Stockbridge LL, Stockbridge NL (1986) Regional properties of calcium entry in barnacle neurons determined with arsenazo III and a photodiode array. J Neurosci 6:1148–4159

    PubMed  CAS  Google Scholar 

  • Rubin RR (1982) Calcium and cellular secretion. Plenum, New York

    Google Scholar 

  • Sakakibara M, Alkon DL, DeLorenzo R, Goldenring JR, Neary JT, Heldman E (1986) Modulation of calcium-mediated inactivation of ionic currents by a Ca2+/calmodulin-dependent protein kinase II. Biophys J 50:319–327

    PubMed  CAS  Google Scholar 

  • Sanchez-Armass S, Blaustein MP (1987) Role of sodium/calcium exchange in the regulation of intracellular Ca2+ in nerve terminals. Am J Physiol 252 (Cell Physiol 21) C595–C603

    PubMed  CAS  Google Scholar 

  • Scarpa A (1976) Kinetic and thermodynamic aspects of mitochondrial calcium transport. In: Packer L, Gomez-Puyou A (eds) Mitochondria. Bioenergetics, biogenesis and membrane structure. Academic, New York, pp 31–45

    Google Scholar 

  • Schlaepfer WW (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res 136:1–9

    PubMed  CAS  Google Scholar 

  • Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn-Schmiedeberg’s Arch Pharmacol 317:326–330

    CAS  Google Scholar 

  • Scott RH, Dolphin AC (1986) Regulation of calcium currents by a GTP analogue: potentiation of (-)-baclophen-mediated inhibition. Neurosci Lett 69:59–64

    PubMed  CAS  Google Scholar 

  • Sheu S-S, Blaustein MP (1986) Sodium/calcium exchange and the regulation of cell calcium and contractility in cardiac muscle, with a note about vascular smooth muscle. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 509–535

    Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212:16–21

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Gonzales-Serratos H, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron probe study. J Cell Biol 90:577–594

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Bond M, Somlyo AP, Scarpa A (1985) Inositol triphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci USA 82:5231–5235

    PubMed  CAS  Google Scholar 

  • Steinberg JP, Leitner JW, Draznin B, Sussman KE (1984) Calmodulin and cyclic AMP. Possible different sites of action of these two regulatory agents in exocytotic hormone release. Diabetes 33:339–344

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature 306:67–69

    PubMed  CAS  Google Scholar 

  • Suskiew JB, O’Leary ME, Murawsky, Wang T (1986) Presynaptic calcium channels in rat cortical synaptosomes: fast-kinetics of phasic calcium influx, channel inactivation and relationship to nitrendipine receptors. J Neurosci 6:1349–1357

    Google Scholar 

  • Takeuchi A, Takeuchi N (1960) On the permeability of end-plate membrane during the action of the transmitter. J Physiol (Lond) 154:52–67

    CAS  Google Scholar 

  • Takeuchi A, Takeuchi N (1963) Effects of calcium on the conductance change of the end-plate during the action of the transmitter. J Physiol (Lond) 167:141–155

    CAS  Google Scholar 

  • Tsien RW, Hess P, McClescky EW, Rosenberg RL (1987) Calcium channels: mechanisms of selectivity, permeation and block Ann Rev Biophys Biophys Chem 16:265–290

    CAS  Google Scholar 

  • Vinogradov A, Scarpa A (1973) The initial velocities of calcium uptake by rat liver mitochondria. J Biol Chem 248:5527–5531

    PubMed  CAS  Google Scholar 

  • Wakabayashi S, Goshima K (1981) Kinetic studies on sodium-dependent calcium uptake by myocardial cells and neuroblastoma cells in culture. Biochim Biophys Acta 642:158–172

    PubMed  CAS  Google Scholar 

  • Wanke A, Ferroni A, Gattanini P, Meldolesi J (1986) α-Latrotoxin of the black widow spider venom opens a small, non-closing cation channel. Biochem Biophys Res Commun 134:320–325

    PubMed  CAS  Google Scholar 

  • Wood JG, Wallace RW, Cheung WY (1980) Immunochemical studies of the localization of calmodulin and CaM-BP80 in brain. In: Cheung WY (ed) Calcium and cell function. Academic, New York, pp 291–303

    Google Scholar 

  • Woodbury W (1963) Interrelationships between ion transport mechanism and excitatory events. Fed Proc 22:31–35

    PubMed  CAS  Google Scholar 

  • Wulfroth P, Peltzelt C (1985) The so-called anticalmodulins, fluphenazine, calmidazolium, and compound 48/80 inhibit the Ca2+-transport system of the endoplasmic reticulum. Cell Calcium 6:295–310

    PubMed  CAS  Google Scholar 

  • Zucker RS, Fogelson AL (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc Natl Acad Sci USA 83:3032–3036

    PubMed  CAS  Google Scholar 

  • Zucker RS, Lando L (1986) Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Science 231:574–579

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of my student, friend, and colleague, Daniel A. Nachshen, who so carefully elucidated the properties of calcium channels in nerve terminals.

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blaustein, M.P. (1988). Calcium and Synaptic Function. In: Baker, P.F. (eds) Calcium in Drug Actions. Handbook of Experimental Pharmacology, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71806-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71806-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71808-3

  • Online ISBN: 978-3-642-71806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics