New Diagnostic Tools for Localizing the Epileptic Focus: Positron Emission Tomography of Cerebral Glucose Metabolism and Magnetic Resonance Imaging in Patients with Complex Partial Seizures

  • H. G. Böcher-Schwarz
  • H. Stefan
  • G. Pawlik
  • H. Penin
  • W.-D Heiss
Part of the Advances in Neurosurgery book series (NEURO, volume 15)


The need for presurgical localization of the epileptic focus is obvious. In patients with drug-resistant complex partial seizures, positron emission tomography (PET) and magnetic resonance imaging (MRI) are likely to increase the diagnostic accuracy achieved by the more conventional noninvasive technical methods, such as CT and surface and sphenoidal EEG recordings (6), and by analysis of ictal symptoms. However, previous studies only compared PET and EEG (3, 15, 18), or MRI and EEG (7, 10). Therefore, this study was designed to demonstrate the diagnostic value of all these methods combined.


Temporal Pole Complex Partial Seizure Epileptic Focus Cerebral Glucose Metabolism Hypermetabolic Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delgado-Escueta AV (1979) Epileptogenic paroxyms: modern approaches and clinical correlations. Neurology 29:1014–1022PubMedGoogle Scholar
  2. 2.
    Delgado-Escueta AV, Walsh GO (1985) Type I complex partial seizures of hippocampal origin: excellent results of anterior temporal lobectomy. Neurology 35:143–154PubMedGoogle Scholar
  3. 3.
    Engel J, Kuhl DE, Phelps ME, Crandall PH (1982) Comparative localization of epileptic foci in partial epilepsy by PCT and EEG. Ann Neurol 12:529–537PubMedCrossRefGoogle Scholar
  4. 4.
    Heiss W-D, Pawlik G, Herholz K, Wagner R, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223PubMedCrossRefGoogle Scholar
  5. 5.
    Herholz K, Pawlik G, Wienhard K, Heiss W-D (1985) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9:154–161PubMedCrossRefGoogle Scholar
  6. 6.
    Ives JR, Gloor P (1977) New sphenoidal electrode assembly to permit long-term monitoring of the patient’s ictal or interictal EEG. Electro-encephalogr Clin Neurophysiol 42:575–580CrossRefGoogle Scholar
  7. 7.
    Janz D, Meencke H-J, Schoerner W (1985) Kernspintomographische Untersuchungen (MRT) bei Patienten mit Temporallappen-Epilepsie. In: Kruse R (ed) Epilepsie 84, Einhorn-Press, Reinbeck, pp 238–242Google Scholar
  8. 8.
    Kuhl DE, Engel J, Phelps ME, Selin C (1980) Epileptic patterns of local cerebral metabolism and perfusion in humans. Determined by emission computed tomography of 18fdg and 13NH3. Ann Neurol 8:348–360PubMedCrossRefGoogle Scholar
  9. 9.
    Lüders H (1986) International conference of surgical treatment on epilepsy. Palm desert (in press)Google Scholar
  10. 10.
    McLachlan RS, Nicholson RL, Black S, Carr T, Blume WT (1985) Nuclear magnetic resonance imaging, a new approach to the investigation of refractory temporal lobe epilepsy. Epilepsia 26:555–562PubMedCrossRefGoogle Scholar
  11. 11.
    Pawlik G, Herholz K, Beil C, Wagner R, Wienhard K, Heiss W-D (1985) Remote effects of local lesions on cerebral flow and metabolism. In: Heiss W-D (ed) Functional mapping of the brain in vascular disorders. Springer, Berlin Heidelberg New York, pp 59–83CrossRefGoogle Scholar
  12. 12.
    Quesney F (1986) International conference of surgical treatment on epilepsy. Palm desert (in press)Google Scholar
  13. 13.
    Sharbrough FW (1986) International conference of surgical treatment on epilepsy. Palm desert (in press)Google Scholar
  14. 14.
    Stefan H, Wieser HG (1986) Intensive presurgical investigation. In: Wieser HG, Elger CH (eds) Methods of presurgical evaluation of epileptic patients. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. 15.
    Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, DeLaPaz R, DiChiro G, Kessler RM, Margolin R, Manning RG, Channing M, Porter RJ (1983) (18F)-Fluordeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437PubMedCrossRefGoogle Scholar
  16. 16.
    Walsh GO, Delgado-Escueta AV (1984) Type II complex partial seizures: poor results of anterior temporal lobectomy. Neurology 34: 1–13PubMedGoogle Scholar
  17. 17.
    Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D (1985) Estimation of local cerebral glucose utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125PubMedCrossRefGoogle Scholar
  18. 18.
    Yamamoto YL, Ochs R, Gloor P, Ammann W, Meyer E, Evans AC, Cooke B, Sako K, Goman J, Feindel WH, Diksic M, Thomson CJ, Robitaille Y (1983) Patterns of rCBF and focal energy metabolic changes in relation to electroencephalographic abnormality in the inter-ictal phase of partial epilepsy. In: Baldy-Moulinier M, Ingvar DH, Meldrum BS (eds) Cerebral blood flow, metabolism and epilepsy. John Libbey EUROTEXT, London Paris, pp 51–62Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. G. Böcher-Schwarz
    • 1
  • H. Stefan
    • 1
  • G. Pawlik
    • 1
  • H. Penin
    • 1
  • W.-D Heiss
    • 1
  1. 1.Max-Planck-Institut für Neurologische ForschungKöln 91Germany

Personalised recommendations