Skip to main content

Part of the book series: Advances in Neurosurgery ((NEURO,volume 15))

  • 53 Accesses

Abstract

Positron emission tomography (Pet) has become the most sophisticated method for studying regional metabolic functions of the brain (PHELPS 1986; REIVICH and ALAVI 1986). While blood flow, glucose consumption, and receptor densities are all highly structured, with active centers in normal and in pathological conditions, other functions, like oxygen extraction and protein synthesis, show a more uniform distribution in normal physiological situations (Frackowiak and Lammertsma 1985). However, oxygen extraction is a high level process in brain tissue, whereas protein synthesis is low in normal brain. Therefore increased protein synthesis in pathological states may be an ideal indicator, with high contrast for abnormally growing tissue in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrio JR (1986) Biochemical principles in radiopharmaceutical design and utilization. In: Phelps ME, Mazziotta JC, Schelbert HR (eds) Positron emission tomography and autoradiography. Raven Press, New York, pp 451–492

    Google Scholar 

  • Bergström M, Collins VP, Ehrin E et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using 68-Ga-EDTA, 11-C-glucose, and 11-C-methioinine. J Comp Assist Tomogr 7:1062–1066

    Article  Google Scholar 

  • Brooks DJ, Beaney RP, Lammertsma AA et al. (1984) Quantitative measurement of blood-brain barrier permeability using rubidium-82 and positron emission tomography. J Cerebr Blood Flow Metabol 4:535–545

    Article  CAS  Google Scholar 

  • Bustany P, Cornar D (1985) Protein synthesis evaluation in brain and other organs in humans by PET. In: Reivich M, Alavi A (eds) Positron emission tomography. Alan R. Liss, New York, pp 183–201

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by use of the indicator diffussion method. Acta Physiol Scand 58:292–305

    Article  PubMed  CAS  Google Scholar 

  • DiChiro G, DelaPaz RL, Brooks RA et al. (1982) Glucose utilization of cerebral gliomas measured by 18-F-fluorodesoxyglucose and positron emission tomography. Neurology 32:1323–1329

    CAS  Google Scholar 

  • DiChiro G, Oldfield E, Bairamian D et al. (1985) In: Greitz T et al. (eds) The metabolism of human brain studied with positron emission tomography. Raven Press, New York, pp 351–361

    Google Scholar 

  • Ericson K, Bergström M, Erikkson L, et al. (1985) Positron emission tomography with 11C-methyl-L-methionine, 11C-D-glucose, and 68Ga-EDTA in supratentorial tumors. J Comp Assist Tomogr 9:683–689

    Article  CAS  Google Scholar 

  • Fackowiak RSJ, Lammertsma AA (1985) Clinical measurement of cerebral blood flow and oxygen consumption. In: Reivich M, Alavi A (eds) Positron emission tomography. Alan R. Liss, New York, pp 153–181

    Google Scholar 

  • Gadisseux P, Ward JD, Young HF et al. (1984) Nutrition and the neurosurgical patient. J Neurosurg 60:219–232

    Article  PubMed  CAS  Google Scholar 

  • Hübner KF, Purvis JT, Mahaley SM et al. (1982) Brain tumor imaging by position emission tomography using 11-C-labeled amino acids. J Comp Assist Tomogr 6:544–550

    Article  Google Scholar 

  • Kessler RM, Goble JC, Bird JH et al. (1984) Measurement of blood brain barrier permeability with positron emission tomography and 68-Ga-EDTA. J Cerebr Blood Flow Metabol 4:323–328

    Article  CAS  Google Scholar 

  • Knapp WH, Helus F, Sinn H et al. (1984) N-13-glutamate uptake in malignancy: Its relationship to blood flow. J Nucl Med 25:989–997

    PubMed  CAS  Google Scholar 

  • Kubota K, Yamada K, Fukada H et al. (1984) Tumor detection with carbon-11-labelled amino acids. Eur J Nucl Med 9:136–140

    Article  PubMed  CAS  Google Scholar 

  • Lajtha A, Toth J (1963) The brain barrier system: V. Stereospecifity of amino acid uptake exchange and efflux. J Neurochem 10:909–920

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Wise RSJ, Heather JD et al. (1983) Correction for the presence of intravascular oxygen-15 in the steady state technique for measuring regional oxygen extraction ratio in the brain: 2. Results in normal subjects and brain tumor and stroke patients. J Cerebr Blood Flow Metabol 3:425–431

    Article  CAS  Google Scholar 

  • Lammertsma AA, Wise RSJ, Jones T (1983) In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumors using positron emission tomography. Acta Neurochir 69:5–13

    Article  CAS  Google Scholar 

  • Meyer G-J, Osterholz A, Hundeshagen H (1982) Routine production and quality control of 11C-L-methionine. J Labeled Comp Radiopharm 19:1286–1287

    Google Scholar 

  • Meyer G-J, Osterholz A, Hundeshagen H (1983) Routine quality control of 11C-labelled radiopharmaceuticals by high pressure liquid chromatography. J Radioanalyt Chem 80:229–235

    Article  CAS  Google Scholar 

  • Meyer G, Schober O, Hundeshagen H (1985) Uptake of 11-C-L-and D-methionine in brain tumors. Eur J Nucl Med 10:373–376

    PubMed  CAS  Google Scholar 

  • Neame KD (1968) A comparison of the transport systems for amino acids in brain, intestine, kidney and tumor. In: Brain barrier systems. Lajtha A, Ford DH (eds) Elsevier, Amsterdam, 185–199

    Chapter  Google Scholar 

  • Oldendorf W (1981) Clearance of radiolabeled substances by brain after arterial injection using a diffusible internal standard. In: Marks N, Rodnight R (eds) Research methods in neurochemistry. Plenum, New York, pp 91–112

    Google Scholar 

  • Patronas NJ, DiChiro G, Smith BH et al. (1984) Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res 291:93–101

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Mazziotta JC, Schelbert HR (eds) (1986) Positron emission tomography and autoradiography. Raven Press, New York

    Google Scholar 

  • Phelps ME, Barrio JR, Huang SC et al. (1984) Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann Neurol 15 (Suppl): 192–202

    Article  CAS  Google Scholar 

  • Reivich M, Alavi A (eds) (1985) Positron emission tomography. Alan R. Liss, New York

    Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscle. Am J Physiol 197:1205–1210

    PubMed  CAS  Google Scholar 

  • Rhodes CG, Wise RSJ, Gibbs JM et al. (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14:614–626

    Article  PubMed  CAS  Google Scholar 

  • Roberts S (1968) Influence of elevated circulating levels of amino acids on cerebral concentration and utilization of amino acids. In: Lajtha A, Ford DH, eds. Brain barrier systems. Elsevier, Amsterdam, pp 235–243

    Chapter  Google Scholar 

  • Smith CB, Davidsen L, Deibler G et al. (1980) A method for the determination of local rates of protein synthesis in brain. Trans Am Soc Neurochem 11:94

    Google Scholar 

  • Schober O, Meyer G, Bossaller C et al. (1985) Quantitative determination of regional extravascular lung water and regional blood volume in congestive heart failure. Eur J Nucl Med 10:17–24

    Article  PubMed  CAS  Google Scholar 

  • Schober O, Meyer G-J, Stolke D et al. (1985) Brain tumor imaging using C-11-labeled L-methionine and D-methionine. J Nucl Med 26:98–99

    PubMed  CAS  Google Scholar 

  • Schober O, Creutzig H, Meyer G-J et al. (1985) 11-C-Methionine PET, IMP-SPECT, CT and MRI bei Hirntumoren. Fortschr Röntgenstr 143:133–136

    Article  CAS  Google Scholar 

  • Shibasaki T, Uki J, Kanoh T et al. (1979) Composition of free amino acids in brain tumors. Acta Neurol Scand 60:301–311

    Article  PubMed  CAS  Google Scholar 

  • Steinwall O (1968) Transport inhibition phenomena in unilateral chemical injury of blood brain barrier. In: Lajtha A, Ford DH (eds) Brain barrier systems. Elsevier, Amsterdam, pp 357–366

    Chapter  Google Scholar 

  • Walker MD (ed) (1984) Research issues in positron emission tomography. Ann Neurol 15(Suppl)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schober, O. et al. (1987). Amino Acid Metabolism in Brain Tumors. In: Wüllenweber, R., Klinger, M., Brock, M. (eds) Regulation of Cerebral Blood Flow and Metabolism Neurosurgical Treatment of Epilepsy Rehabilitation in Neurosurgery. Advances in Neurosurgery, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71793-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71793-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17402-8

  • Online ISBN: 978-3-642-71793-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics