Skip to main content

Improved Measurement of Regional Glucose Metabolism by Individual Determination of the Lumped and Kinetic Constants in Stroke Patients

  • Conference paper
Cerebral Ischemia and Hemorheology
  • 447 Accesses

Abstract

Positron emission tomography (PET) of [18F]2-fluoro-2-deoxy-D-glucose (FDG) is a generally accepted method for local estimation of glucose metabolism in vivo and has found wide application in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P (1981) Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Eur Neurol 20: 273–284

    Article  PubMed  CAS  Google Scholar 

  2. Barrio JR, MacDonald NS, Robinson GD, Najafi A, Cook JS, Kuhl DE (1981) Remote, semiautomated production of F18-labeled 2-deoxy-2-fluoro-D-glucose. J Nucl Med 22: 372–375

    PubMed  CAS  Google Scholar 

  3. Bergström M, Litton J, Eriksson L, Bohm C, Blomqvist G (1982) Determination of object contour from projections for attenuation correction in cranial positron emission tomography. J ComputAssist Tomogr 6: 365–372

    Article  Google Scholar 

  4. Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Com put Assist Tomogr 7: 42–50

    Article  Google Scholar 

  5. Brooks RA (1982) Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23: 538–539

    PubMed  CAS  Google Scholar 

  6. Eriksson L, Bohm C, Kesselberg M, Blomqvist G, Litton J, Widen L, Bergström M, Ericson K, Greitz T (1982) A four ring positron camera system for emission tomography of the brain. IEEE Trans Nucl Sci 29: 539–543

    Article  Google Scholar 

  7. Fowler JS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI, Ruth TJ (1981) A shielded synthesis system for production of 2-deoxy-2-(18F)fluoro-o-glucose. J Nucl Med 22: 376–380

    PubMed  CAS  Google Scholar 

  8. Gjedde A, Diemer NH (1983) Autoradiographic determination of regional brain glucose content. J Cereb Blood Flow Metabol 3: 303–310

    Article  CAS  Google Scholar 

  9. Gjedde A, Heiss WD, Wienhard K (1985) Regional analysis of steady-state clearance of fluoro-deoxyglucose into the human brain. In: Hartmann A, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp 404–409

    Google Scholar 

  10. Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, Pawlik G (1985) Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metabol 5: 163–178

    Article  CAS  Google Scholar 

  11. Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metabol 1: 37–52

    Article  CAS  Google Scholar 

  12. Heiss WD, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K (1984) Regional kinetic constants and CMRglu in normal volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-o-glucose. J Cereb Blood Flow Metabol 4: 212–223

    Article  CAS  Google Scholar 

  13. Herholz K, Pawlik G, Wienhard K, Heiss WD (1984) Computer assisted mapping in quantitative analysis of cerebral positron emission tomograms. J Comput Assist Tomogr 9: 154–161

    Article  Google Scholar 

  14. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69-E82

    PubMed  CAS  Google Scholar 

  15. Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ (1984) Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metabol 4: 35–40

    Article  CAS  Google Scholar 

  16. Ido T, Wan CN, Fowler JS, Wolf AP (1977) Fluorination with FZ, a convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J Org Chern 42: 2341–2342

    Article  CAS  Google Scholar 

  17. Kloster G, Müller-Platz C, Laufer P (1981) 3-[11C]-methyl-D-glucose, a potential agent for regional glucose utilization studies: synthesis, chromatography and tissue distribution in mice. J Lab Comp Radiopharm 18: 855–863

    Article  CAS  Google Scholar 

  18. Laufer P, Kloster G (1982) Remote control synthesis of 3-[11C]-methyl-D-glucose. Int J Appl Radiat Isot 33: 775–776

    Article  PubMed  CAS  Google Scholar 

  19. Lenzi GL, Frackowiak RS, Jones T (1981) Regional cerebral blood flow (CBF), oxygen utilization (CMRO,) and oxygen extraction ratio (OER) in acute hemispheric stroke. J Cereb Blood Flow Meta boll Suppl 1: S504-S505

    Google Scholar 

  20. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabol 3: 1–7

    Article  CAS  Google Scholar 

  21. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-fluoro- 2-deoxy-o-glucose: validation of method. Ann Neurol 6: 371–388

    Article  PubMed  CAS  Google Scholar 

  22. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps ME, Ido T, Casella V et al. (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137

    PubMed  CAS  Google Scholar 

  23. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J N eurochem 28: 897–916

    CAS  Google Scholar 

  24. Wienhard K, Pawlik G, Eriksson L, Wagner R, lisen HW, Herholz K, Heiss WD (1983) Kinetic constants of cerebral glucose metabolism in pathological conditions. J Cereb Blood Flow Metabol 3 Suppl l:S474-S475

    Google Scholar 

  25. Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [F-18]-2-fluoro-2-deoxyD- glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metabol 5: 115–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wienhard, K., Gjedde, A., Heiss, WD., Herholz, K., Pawlik, G. (1987). Improved Measurement of Regional Glucose Metabolism by Individual Determination of the Lumped and Kinetic Constants in Stroke Patients. In: Hartmann, A., Kuschinsky, W. (eds) Cerebral Ischemia and Hemorheology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71787-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71787-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71789-5

  • Online ISBN: 978-3-642-71787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics