Skip to main content

Pharmacologic Alteration of Aqueous Humor Dynamics in Normotensive and Glaucomatous Monkey Eyes

  • Conference paper
  • 67 Accesses

Abstract

The results of pharmacologic testing in clinical trials, with drugs that successfully lower intraocular pressure (IOP) in experimental animals, have often been disappointing. The variability in response to drugs amongst the species may be due to differences in anatomy [1]; drug penetration; and/or receptor quantity, quality, location, or regulation [2]. A reliable and readily available model that closely mimics human glaucoma is needed to determine the efficacy and mechanism of action of potential ocular hypotensive agents prior to embarking upon clinical trials. The normal monkey eye is similar to the human eye with respect to iridocorneal angle anatomy, physiology, and response to ocular hypotensive drugs. The argon laser-induced glaucomatous monkey eye may be a satisfactory model to evaluate the potential efficacy of experimental drugs.

Supported in part by grants EY01867, EY03651, EY05852, and EY05841 from the National Eye Institute, Bethesda, Maryland; an unrestricted grant from Research to Prevent Blindness, Inc., New York, New York; a grant-in-aid from the National Society to Prevent Blindness, New York, New York; and a grant from the Heed Ophthalmic Foundation, Chicago, Illinois.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Tripathi RC (1971) Ultrastructure of the exit pathway of the aqueous in lower mammals. Exp Eye Res 12:311–314

    Article  PubMed  CAS  Google Scholar 

  • Nathanson JA (1981) Human ciliary process adrenergic receptor: Pharmacological characterization. Invest Ophthalmol Vis Sci 21:798–804

    PubMed  CAS  Google Scholar 

  • Camras CB, Podos SM, Rosenthal JS, Lee P-Y, Severin CH (1987) Multiple dosing of Prostaglandin F or epinephrine on cynomolgus monkey eyes: I. Aqueous humor dynamics. iInvest Ophthalmol Vis Sci (in press)

    Google Scholar 

  • Podos SM, Lee P-Y, Severin C, Mittag T (1984) The effect of vanadate on aqueous humor dynamics in cynomologus monkeys. Invest Ophthalmol Vis Sci 25:359–361

    PubMed  CAS  Google Scholar 

  • Sobel L, Serie JB, Podos SM, et al (1983) Topical nylidrin and aqueous humor dynamics in rabbits and monkeys. Arch Ophthalmol 101:1281–1283

    PubMed  CAS  Google Scholar 

  • Serie JB, Stein AJ, Podos SM, Severin CH (1984) Corynanthine and aqueous humor dynamics in rabbits and monkeys. Arch Ophthalmol 102:1385–1388

    Google Scholar 

  • Siegel MJ, Lee P-Y, Podos SM, Mittag T, Wayne R (1986) Effects of topical pergolide on aqueous dynamics in normal and glaucomatous monkeys. Invest Ophthalmol Vis Sci [Suppl] (in press)

    Google Scholar 

  • Potter DE, Burke JA (1982) Effects of ergoline derivatives on intraocular pressure and iris function in rabbits and monkeys. Curr Eye Res 2:281–288

    Article  PubMed  Google Scholar 

  • Camras CB, Bito LZ (1981) Reduction of intraocular pressure in normal and glaucomatous primate (Aotus trivirgatus) eyes by topically applied Prostaglandin F2 alpha. Curr Eye Res 1:205–209

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Podos SM, Severin C (1984) Effect of Prostaglandin F on aqueous humor dynamics of rabbit, cat, and monkey. Invest Ophthalmol Vis Sci 25:1087

    PubMed  CAS  Google Scholar 

  • Stern FA, Bito LZ (1982) Comparison of the hypotensive and other ocular effects of Prostaglandins E2 and F on cat and rhesus monkey eyes. Invest Ophthalmol Vis Sci 22:588

    PubMed  CAS  Google Scholar 

  • Crawford K, True B, Kaufman PL (1985) Topical Prostaglandin effects on aqueous humor dynamics in cynomolgus monkeys. Invest Ophthalmol Vis Sci [Suppl] 26:233

    Google Scholar 

  • Bito LZ, Draga A, Blanco J, Camras CB (1983) Long-term maintenance of reduced intraocular pressure by daily or twice daily topical application of Prostaglandins to cat or rhesus monkey eyes. Invest Ophthalmol Vis Sci 24:312–319

    PubMed  CAS  Google Scholar 

  • Caprioli J, Sears M, Bausher L, Gregory D, Mead A (1984) Forskolin lowers intraocular pressure by reducing aqueous inflow. Invest Ophthalmol Vis Sci 25:268

    PubMed  CAS  Google Scholar 

  • Smith BR, Gaster RN, Leopold IH, Zeleznick LD (1984) Forskolin, a potent adenylate cyclase activator, lowers rabbit intraocular pressure. Arch Ophthalmol 102:146–148

    PubMed  CAS  Google Scholar 

  • Caprioli J, Sears M (1984) Combined effect of forskolin and acetazolamide on intraocular pressure and aqueous flow in rabbit eye. Exp Eye Res 39:47

    Article  PubMed  CAS  Google Scholar 

  • Potter DE, Burke JA, Temple JR (1985) Forskolin suppresses sympathetic neuron function and causes ocular hypotension. Curr Eye Res 4:87–96

    Article  PubMed  CAS  Google Scholar 

  • Lee P-Y, Podos SM, Mittag T, Severin C (1984) Effect of topically applied forskolin on aqueous humor dynamics in cynomolgus monkey. Invest Ophthalmol Vis Sci 25:1206–1209

    PubMed  CAS  Google Scholar 

  • Gaasterland D, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13:455–457

    PubMed  CAS  Google Scholar 

  • Quigley HA, Hohman RM (1983) Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci 24:1305–1307

    PubMed  CAS  Google Scholar 

  • Pederson JE, Gaasterland DE (1984) Laser-induced primate glaucoma: I. Progression of cupping. Arch Ophthalmol 102:1689–1692

    PubMed  CAS  Google Scholar 

  • Radius RL, Pederson JE (1984) Laser-induced primate glaucoma: II. Histopathology. Arch Ophthalmol 102:1693–1698

    PubMed  CAS  Google Scholar 

  • Lee P-Y, Podos SM, Howard-Williams JR, Severin CH, Rose AD, Siegel MJ (1985) Pharmacological testing in the laser-induced monkey glaucoma model. Curr Eye Res 4:775–781

    Article  PubMed  CAS  Google Scholar 

  • Lee P-Y, Podos SM, Serie JB, Camras CB, Severin CH (1987) Pharmacological testing of multiple dose drugs in the laser-induced monkey glaucoma model. Arch Ophthalmol (in press)

    Google Scholar 

  • Serie JB, Podos SM, Lustgarten JS, Teitelbaum C, Severin CH (1985) The effect of corynanthine on intraocular pressure in clinical trials. Ophthalmology 92:977–980

    Google Scholar 

  • Brogliatti B, Rolle T, Messelod M, Carenini BB (1985) A new alpha-blocking agent in the treatment of glaucoma: dapiprazole. Glaucoma 7:232–236

    Google Scholar 

  • Krupin T, Podos SM, Becker B (1983) Ocular effects of vanadate. Krieglstein GK, Leydhecker W (eds) Glaucoma update IL Springer, Berlin Heidelberg New York Tokyo, pp 25–28

    Google Scholar 

  • Giuffre G (1985) The effects of Prostaglandin F in the human eye. Graefe’s Arch Clin Exp Ophthalmol 222:139–141

    Article  CAS  Google Scholar 

  • Badian M, Dabrowski J, Grigoleit HG, Lieb W, Linder E, Rupp W (1984) Effect of forskolineyedrops on the intraocular pressure of healthy male subjects. Klin Mbl Augenheilk 522-526

    Google Scholar 

  • Sears ML (1985) Regulation of aqueous flow by the adenylate cyclase receptor complex in the ciliary epithelium. Amer J Ophthalmol 100:194–198

    CAS  Google Scholar 

  • Burstein NL, Sears ML, Mead A (1984) Aqueous flow in human eyes is reduced by forskolin, a potent adenylate cyclase activator. Exp Eye Res 39:745–749

    Article  PubMed  CAS  Google Scholar 

  • Mekki QA, Warrington SJ, Turner P (1984) Bromocriptine eyedrops lower intraocular pressure without affecting prolactin levels. Lancet II(4):287–288

    Article  Google Scholar 

  • Lewis RA, Schoenwald RD, Barfknecht CF, Phelps CD (1986) Aminozolamide gel: A trial of a topical carbonic anhydrase inhibitor in ocular hypertension. Arch Ophthalmol 104:842–844

    PubMed  CAS  Google Scholar 

  • Caprioli J, Sears M, Kosley R, Cherill R, Huger F (1985) Cyclase activation and IOP reduction by forskolin analogs. Invest Ophthalmol Vis Sci [Suppl] 26:233

    Google Scholar 

  • Camras CB, Bito LZ, Eakins KE (1977) Reduction of intraocular pressure by Prostaglandins applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci 16:1125–1134

    PubMed  CAS  Google Scholar 

  • Kulkarni PS, Srinivasan BD (1985) Prostaglandins E3 and D3 lower intraocular pressure. Invest Ophthalmol Vis Sci 26:1178–1182

    PubMed  CAS  Google Scholar 

  • Bito LZ (1984) Comparison of the ocular hypotensive efficacy of eicosanoids and related compounds. Exp Eye Res 38:181

    Article  PubMed  CAS  Google Scholar 

  • Camras CB, Feldman SG, Podos SM, Christensen RE, Gardner SK, Fazio DT (1985) Inhibition of the epinephrine-induced reduction of intraocular pressure by systemic indomethacin in humans. Am J Ophthalmol 100:169–175

    PubMed  CAS  Google Scholar 

  • Horowitz RS, Camras CB, Lee P-Y, Podos SM (1986) Possible role of Prostaglandins in the reduction of intraocular pressure (IOP) after argon laser trabeculoplasty in cats. Invest Ophthalmol Vis Sci [Suppl] 27:165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Podos, S.M., Camras, C.B., Serle, J.B., Lee, PY. (1987). Pharmacologic Alteration of Aqueous Humor Dynamics in Normotensive and Glaucomatous Monkey Eyes. In: Krieglstein, G.K. (eds) Glaucoma Update III. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71785-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71785-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17399-1

  • Online ISBN: 978-3-642-71785-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics