Skip to main content

Beta Decay far from Stability and the Decay Heat of Nuclear Reactors

  • Conference paper
Weak and Electromagnetic Interactions in Nuclei

Abstract

The interest in the β-decay properties of nuclides far (and not so far) from stability has increased in recent years. Since the calculation of the half-lives of neutron-rich nuclei published in [1], about 70 new isotopes have been discovered, and this number will increase rapidly with new experimental possibilities (see, e.g.[2–5]). The theoretical predictions [1] thus can be tested now on a rather large number of nuclei unknown at the time of the calculations. Fig. 1 compares the half-lives of the latter nuclides with the predictions of [1]. The theoretical values are found reliable within the expected limits. This is of importance in particular for the astrophysical conclusions on element synthesis, age of galaxy and more recently the value of the cosmological constant and the corresponding energy density of the vacuum [6–8]. The new data allow on the other hand to improve the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.V. Klapdor, J. Metzinger, T. Oda, At. Data Nucl. Data Tables 31 (1984) 81.

    Article  ADS  Google Scholar 

  2. A.C. Mueller, this volume.

    Google Scholar 

  3. J.P. Dufour et al., this volume.

    Google Scholar 

  4. O. Klepper, this volume.

    Google Scholar 

  5. R.W. Hoff, this volume.

    Google Scholar 

  6. H.V. Klapdor, Fortschr. d. Physik 33 (1985) 1.

    Article  ADS  Google Scholar 

  7. H.V. Klapdor, Invited lecture presented at Internat. School of Nucl. Phys.: The Early Universe and its Evolution, Erice, Sicily, 2–14 April 1986, in press in Progr. Part. Nucl. Phys.

    Google Scholar 

  8. H.V. Klapdor, K. Grotz, Astrophys. J. 301 (1986) L39 and this volume.

    Article  ADS  Google Scholar 

  9. M.J. Murphy et al., Phys. Rev. Lett. 49, 455 (1982).

    Article  ADS  Google Scholar 

  10. J.D. Baker et al., J. Radioanal. Chem. 74, 117 (1982).

    Article  Google Scholar 

  11. R. Kirchner et al., Nucl. Phys. A378, 549 (1982).

    ADS  Google Scholar 

  12. F.K. Wohn et al., Phys. Rev. Lett. 51, 873 (1983).

    Article  ADS  Google Scholar 

  13. R.C. Greenwood et al., Phys. Rev. C27, 1266 (1983).

    ADS  Google Scholar 

  14. M. Langevin et al., Phys. Lett. 125B, 116 (1983).

    ADS  Google Scholar 

  15. E. Runte et al., Nucl. Phys. A399, 63 (1983).

    Google Scholar 

  16. J.C. Hill et al., Phys. Rev. C27, 2857 (1983).

    ADS  Google Scholar 

  17. M. Langevin et al., Phys. Lett. 130B, 251 (1983).

    ADS  Google Scholar 

  18. J.C. Hill et al., Phys. Rev. C29, 1078 (1984).

    ADS  Google Scholar 

  19. K. Rykaczewski et al., Z. Phys. A309, 273 (1983).

    ADS  Google Scholar 

  20. M. Langevin et al., Nucl. Phys. A414, 151 (1984).

    ADS  Google Scholar 

  21. E. Runte et al., Nucl. Phys. A441, 237 (1985).

    ADS  Google Scholar 

  22. P. Hill et al., Z. Phys. A320, 531 (1985).

    ADS  Google Scholar 

  23. U. Bosch et al., Phys. Lett. 164B, 22 (1985).

    ADS  Google Scholar 

  24. P.L. Reeder et al., Phys. Rev. C31, 1029 (1985).

    ADS  Google Scholar 

  25. H. Göktürk et al., Z. Phys. A324, 117 (1986).

    Google Scholar 

  26. J.P. Dufour et al., Z. Phys. A324, 487 (1986).

    ADS  Google Scholar 

  27. M.S. Curtin et al., Phys. Rev. Lett. 56, 34 (1986).

    Article  ADS  Google Scholar 

  28. M. Mach et al., Phys. Rev. C34, 1117 (1986).

    ADS  Google Scholar 

  29. M. Mach et al., Phys. Rev. Lett. 56, 1547 (1986).

    Article  ADS  Google Scholar 

  30. R.L. Gill et al., Phys. Rev. Lett. 56, 1874 (1986).

    Article  ADS  Google Scholar 

  31. J.C. Hill et al., Phys. Rev. C33, 1727 (1986).

    ADS  Google Scholar 

  32. M.J.G. Borge et al., CERN-EP/86–89.

    Google Scholar 

  33. P. Taskinen et al., this volume.

    Google Scholar 

  34. H.V. Klapdor, J. Metzinger Phys. Rev. Lett. 48 (1982) 127 and

    Article  ADS  Google Scholar 

  35. H.V. Klapdor, J. Metzinger Phys. Lett. 112B (1982) 22.

    Google Scholar 

  36. F. von Feilitzsch et al., Phys. Lett. 118B (1982) 162.

    ADS  Google Scholar 

  37. K. Schreckenbach et al., Phys. Lett. 160B (1985) 325.

    ADS  Google Scholar 

  38. K. Schreckenbach, this volume.

    Google Scholar 

  39. H.V. Klapdor, Proceed. KTG/ENS-Internat. “State of the Art”- Seminar on Nuclear Data, Cross Section Libraries and Their Application in Nuclear Technology, Bonn, October 1–2, 1985, p. 419–158.

    Google Scholar 

  40. J. Metzinger, H.V. Klapdor, Proceed. ASM Internat. Conf. on Nuclear Power Plant Aging, Availability Factor and Reliability Analysis, San Diego, California, 8–12 July, 1985.

    Google Scholar 

  41. J.K. Dickens, T.A. Love, J.W. McConnell, R.W. Peele, Nucl. Sci. Eng. 74 (1980) 106

    Google Scholar 

  42. A. Tobias, Progr. Nucl. Energy 5 (1980) 1

    Article  Google Scholar 

  43. F. Schmittroth, R.W. Schenter, Nucl. Sci. Eng. 63 (1977) 276

    Google Scholar 

  44. H.V. Klapdor, Progr. Part. Nucl. Phys. 10 (1983) 131

    Article  ADS  Google Scholar 

  45. T. Yoshida, Nucl. Sci. Eng. 63 (1976) 376

    Google Scholar 

  46. T. Yoshida, R. Nakasima, J. Nucl. Sci. Techn. 18 (1981) 393

    Article  Google Scholar 

  47. Karlsruhe Chart of the Nuclides, 5th edition 1981, W. Seelmann-Eggebert, G. Pfennig, H. Münzel, H. Klewe-Nebenius

    Google Scholar 

  48. A.H. Wapstra, G. Audi, The 1983 Atomic Mass Table, Nucl. Phys. A 432 (1985) 1

    Article  ADS  Google Scholar 

  49. A.G. Croff, Nucl. Technology 62 (1982) 335 and ORNL-RSIC CCC 371 A

    Google Scholar 

  50. B.F. Rider, Compil. of Fiss. Prod. ENDF/B-VI (1981)

    Google Scholar 

  51. J.K. Dickens, T.A. Love, J.W. McConnell, R.W. Peele, Nucl. Sci. Eng. 78 (1981) 126

    Google Scholar 

  52. M. Akiyama, S. An, Nucl. Data Sci. Technology 237–244, ed. K.H. Böckhoff, 1983, ECSC, EEC, EAEC, Brussels and Luxembourg

    Google Scholar 

  53. ANSI/ANS-5.1–1979, American National Standard for Decay Heat Power in Light Water Reactors (1979)

    Google Scholar 

  54. DIN 25463, German Standard for the Decay Heat Power in Light Water Reactors (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klapdor, H.V., Metzinger, J., Grotz, K. (1986). Beta Decay far from Stability and the Decay Heat of Nuclear Reactors. In: Klapdor, H.V. (eds) Weak and Electromagnetic Interactions in Nuclei. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71689-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71689-8_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71691-1

  • Online ISBN: 978-3-642-71689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics