Skip to main content

Suppressors of RAS Function in Saccharomyces cerevisiae

  • Conference paper
Cell Cycle and Oncogenes

Abstract

The yeast Saccharomyces cerevisiae contains at least three genes which share homology with members of the ras oncogene family (6,7,12,23). YPT, on chromosome VI, shares about 40% homology with mammalian ras in the first 160 amino acids. RAS1 and RAS2 on chromosome XV and XIV respectively, are over 60% homologous with ras in the same region. Genetic analysis of these genes reveals that YPT and RAS1 and RAS2 constitute essential functions. Yeast cells lacking functional RAS1 and RAS2 genes are inviable (17,28); YPT fails to complement the mutations in RAS1 and RAS2 and therefore encodes a separate function (Gallwitz et al. Chap. II 8, this Vol.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutelet F, Petitjean A, Hilger F (1985) Yeast cdc35 mutants are defective in adenylate cyclase and are allelic with cyr1 mutants whilse CAS1 a new gene, is involved in the regulation of adenylate cyclase. EMBO J 4:2635–2641

    PubMed  CAS  Google Scholar 

  2. Breviario D, Hinnebusch A, Cannon J, Tatchell K, Dhar R (1986) Carbon source regulation of RASl expression in Saccharomyces cerevisiae and the phenotypes of ras2-cells. Proc Natl Acad Sci USA 83:4152–4156

    Article  PubMed  CAS  Google Scholar 

  3. Cannon JF, Gibbs JB, Tatchell K (1986) Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics 113:247–264

    PubMed  CAS  Google Scholar 

  4. Casperson GF, Walker N, Brasier AR, Bourne HR (1983) A guanine nucleotide-sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae, J Biol Chem 258:7911–7914

    PubMed  CAS  Google Scholar 

  5. Casperson GF, Walker N, Bourne HR (1985) Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 82:5060–5063

    Article  PubMed  CAS  Google Scholar 

  6. Dahr R, Nieto A, Roller R, DeFeo-Jones D, Scolnick EM (1984) Nucleotide sequence of two ras-related genes isolated from the yeast Saccharomycs cerevisiae. Nucleic Acids Res 12:3611–3618

    Article  Google Scholar 

  7. DeFeo-Jones D, Scolnick EM, Roller R, Dhar R (1983) Pas-related gene sequences identified and isolated from Saccharomyces cerevisiae Nature (London) 306:707–709

    Article  CAS  Google Scholar 

  8. DeFeo-Jones D, Tatchell K, Robinson LC, Sigal I, Vass W, Lowry DR, Scolnick EM (1985) Mammalian and yeast ras gene products: biological function in their heterologous systems. Science 228:179–184

    Article  PubMed  CAS  Google Scholar 

  9. Ellis TE, Lowy DR, Scolnick EM (1982) The viral and cellular p21 (ras) gene family. Adv Viral Oncol 1:107–126

    CAS  Google Scholar 

  10. Fraenkel D (1985) On ras gene function in yeast. Proc Natl Acad Sci USA 82:4740–4744

    Article  PubMed  CAS  Google Scholar 

  11. Fujiyama A, Tamanoi F (1986) Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 83:1266–1270

    Article  PubMed  CAS  Google Scholar 

  12. Gallwitz D, Donath C, Sander C (1983) A yeast gene encoding a protein homologous to the human C-has/bas proto oncogene product. Nature (London) 306:704–707

    Article  CAS  Google Scholar 

  13. Gibbs JB, Sigal IS, Scolnick EM (1985) Biochemical properties of normal and oncogenic ras-p21. Trends Biochem Sci 10:350–353

    Article  CAS  Google Scholar 

  14. Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  PubMed  CAS  Google Scholar 

  15. Kataoka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M (1984) Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37:437–445

    Article  PubMed  CAS  Google Scholar 

  16. Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J, Wigler M (1985) Functional homology of mammalian and yeast RAS genes. Cell 40:19–26

    Article  PubMed  CAS  Google Scholar 

  17. Kataoka T, Broek D, and Wigler M (1985) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505

    Article  PubMed  CAS  Google Scholar 

  18. Lillie SH, Pringle JR (1980) Reverse carbohydrate metabolism in Saccharomyces: responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  CAS  Google Scholar 

  19. Matsumoto K, Uno I, Oshima Y, Ishikawa T (1982) Isolation and characterization of yeast mutants deficient in adenylate cyclase and cyclic AMP dependent protein kinase. Proc Natl Acad Sci USA 79:2355–2359

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto K, Uno I, Ishikawa T (1983) Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP dependent protein kinase. Cell 32:417–423

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast 1:15–24

    CAS  Google Scholar 

  22. Ortiz CH, Maia JCC, Tenan MM, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic AMP-dependent phosphorylation-dephos-phorylation cascade system. J Bacteriol 153:644–651

    PubMed  CAS  Google Scholar 

  23. Powers S, Kataoka T, Fasano O Goldfarb M, Broach J, Wigler M (1984) Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612

    Article  PubMed  CAS  Google Scholar 

  24. Pringle JR, Hartwell LH (1982) The Saccharomyces cerevisiae cell cycle. In: Strathern J, JOnes E, Broach J (eds) The molecular biology of the yeast Saccharomyces-life cycle and inheritance. Cold Spring Harbor Lab, Cold Spring Harbor, New York, pp 97–142

    Google Scholar 

  25. Shilo V, Shimchen G, Shilo B (1978) Initiation of meiosis in cell-cycle initiation mutants of Saccharomyces cerevisiae. Exp Cell Res 112:241–248

    Article  PubMed  CAS  Google Scholar 

  26. Tamanoi F, Walsh M, Kataoka T, Wigler M (1984) A product of yeast RAS2 is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 81:6924–6928

    Article  PubMed  CAS  Google Scholar 

  27. Tamanoi F, Samiy N, Rao M, Walsh M (1985) Enzymatic properties of yeast RAS2 protein. In: Feramisco J, Ozanne B, Stiles L (eds) Cancer cells, vol. III. Growth factors and transformation. Cold Spring Harbor Lab, Cold Spring Harbor New York, pp 251–256

    Google Scholar 

  28. Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM (1984) Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature (London) 309:523–527

    Article  CAS  Google Scholar 

  29. Tatchell K, Robinson LC, Breitenbach M (1985) RAS2 of Saccharomyces cerevisiae is required for gluconeogenic growth and proper response to nutrient limitation. Proc Natl Acad Sci USA 82:3785–3789

    Article  PubMed  CAS  Google Scholar 

  30. Temeles GL, DeFeo-Jones D, Tatchell K, Ellinger MS, Scolnick EM (1984) Expression anc characterization of ras mRNA’s from Saccharomyces cerevisiae. Mol Cell Biol 4:2298–2305

    PubMed  CAS  Google Scholar 

  31. Temeles GL, Gibbs JB, D’Alonzo JS, Sigal IS, Scolnick EM (1985) Yeast and mammalian ras proteins have conserved biochemical properties. Nature (London) 313:700–703

    Article  CAS  Google Scholar 

  32. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  PubMed  CAS  Google Scholar 

  33. Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258:10867–10872

    PubMed  CAS  Google Scholar 

  34. Wingender-Drissen R, Becker JU (1983) Regulation of yeast phosphorylase by phosphorylase kinase and cAMP-dependent protein kinase. FEBS Lett 163:33–36

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tatchell, K., Cannon, J.F., Robinson, L.C., Wilson, R.B. (1986). Suppressors of RAS Function in Saccharomyces cerevisiae . In: Tanner, W., Gallwitz, D. (eds) Cell Cycle and Oncogenes. Colloquium der Gesellschaft für Biologische Chemie 10.–12. April 1986 in Mosbach/Baden, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71686-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71686-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71688-1

  • Online ISBN: 978-3-642-71686-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics