Skip to main content

Inhibition of Mitotic and Proliferative Activity of Smooth Muscle Cells by Prostaglandin E1

  • Conference paper
Prostaglandin E1 in Atherosclerosis

Summary

In the past it has been shown that antiaggregatory prostaglandins might exert an antiproliferative activity on vascular wall smooth muscle cells. This study examines this question in an experimental model and in humans as well. DCS and ACTH administration intramuscularly in rabbits causes a significant increase in the mitotic activity as measured by means of [3H] thymidine. Treatment with PGI2 is able to diminish the enhanced mitotic activity in all three vascular wall layers, whereas it does not change the mitotic activity in the control animals. After 5 days of PGE1 therapy in humans, the number of activated smooth muscle cells is decreased in the intima and in the media as well. These cells exhibit a higher PGI2-formation probably in order to counterbalance further proliferation by enhancement of intracellular cAMP. This vicious cycle phenomenon is interrupted by PGI2 and PGE1 treatment, resulting in a lower actual PGI2-formation in the activated cells, whereas the ones in the contractile cells is not affected at all. Similar findings can be obtained for the radioactive thin-layer chromatography of human femoral and popliteal artery tissue showing paralleling changes in the formation of 6-keto-PGF after both PGI2 and PGE1 therapy. The findings demonstrate that PGE1 and PGI2 have a significant antiproliferative and antimitotic action in experimental animals and in human as well. Platelet-derived growth factor is discussed as being the main pathogenetic factor balancing smooth muscle proliferation by either direct stimulation or inhibition through an increasing effect on vascular wall PGI2 synthesis. These findings firstly demonstrate in humans that proliferation of smooth muscle cells can be affected by prostaglandin therapy in clinically relevant doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyagi T, Suye H, Kato N, Nemoto O, Kobayashi H, Minva Y (1985) Epidermal growth factor stimulates release of arachidonic acid in pig epidermis. J Invest Dermatol 84: 168–171

    Article  PubMed  CAS  Google Scholar 

  2. Berberian PA, Ziboh VA, Hsia SL (1977) Inhibition of cholesterol esterification in rabbit aorta by prostaglandin E2. Atherosclerosis 27: 213–220

    Article  PubMed  CAS  Google Scholar 

  3. Bonchek LI, Boerboom LE, Olinger GN, Pepper JR, Munns J, Hutchinson L, Kissebah AH (1982) Prevention of lipid accumulation in experimental vein bypass grafts by antiplatelet therapy. Circulation 66: 338–341

    Article  PubMed  CAS  Google Scholar 

  4. Castor CW, Ritchie J, Scott ME (1977) Connective tissue activation and stimulation of glycosaminoglycan and DNA formation by platelet factor. Arch Pharm (Weinheim) 20: 859–868

    CAS  Google Scholar 

  5. Chait A, Ross R, Alberts H (1980) Platelet derived growth factor stimulates activity of low-density lipoprotein receptors. Proc Natl Acad Sci USA 77: 4084–4088

    Article  PubMed  CAS  Google Scholar 

  6. Coughlin SR, Moshkowitz MA, Antoniades HN (1981) Serotonin receptor mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet derived growth factor. Proc Natl Acad Sci USA 78: 7134–7138

    Article  PubMed  CAS  Google Scholar 

  7. Dembinska-Kiec A; Rücker W, Schönhofer PS (1980) Effects of PGI2 and PGI2 analogues on cAMP levels in cultured endothelial and smooth muscle cells derived from bovine arteries. Naunyn Schmiedebergs Arch Pharmacol 311: 67–70

    Article  PubMed  CAS  Google Scholar 

  8. Dembinska-Kiec A, Gryglewski RJ (1986) Contribution of arachidonic acid metabolites to atherosclerosis. Wien Klin Wochenschr 98: 196–199

    Google Scholar 

  9. Fairbanks KP, Witte LD, Goodman DS (1986) Effects of platelet derived growth factor on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Arteriosclerosis 6: 32–41

    Google Scholar 

  10. Feigl W, Sinzinger H, Wagner O, Leithner C (1975) Quantitative morphological investigations on smooth muscle cells in vascular surgical specimens and their clinical importance. Experientia 31: 1352–1353

    Article  PubMed  CAS  Google Scholar 

  11. Fleisher LN, Ton AN, Witte LD, Miller RN, Cannon RY (1982) Stimulation of arterial endothelial cell prostacyclin synthesis by high-density lipoproteins. J Biol Chem 257: 6653–6655

    PubMed  CAS  Google Scholar 

  12. Fogelman AM, Shehter I, Seager J, Hokam M, Child JS, Edwards PA (1980) Malondialdehyde alteration at low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77: 2214–2218

    Article  PubMed  CAS  Google Scholar 

  13. Grotendorst GR, Seppa HEJ, Kleinman H, Martin H (1981) Attachment of smooth muscle cells to collagen and their migration toward plateled-derived growth factor. Proc Natl Acad Sci USA 78: 3669–3672

    Article  PubMed  CAS  Google Scholar 

  14. Habenicht AJR, Glomset JA, Ross R (1980) Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and swiss 3T3 cells stimulated to divide by platelet derived growth factor. J Biol Chem 255: 5134–5140

    PubMed  CAS  Google Scholar 

  15. Hajjar DP, Weksler BB, Falcone DJ, Hefton JM, Tack-Goldman K, Minick CR (1982) Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine monophosphate in rabbit aortic smooth muscle cells. J Clin Invest 70: 479–488

    Article  PubMed  CAS  Google Scholar 

  16. Hajjar DP (1984) Prostaglandins modulate arterial cholesteryl ester metabolism. Enzyme 32: 218–227

    PubMed  CAS  Google Scholar 

  17. Hajjar DP (1985) Prostaglandins and cyclic nucleotides. Modulators of arterial cholesterol metabolism. Biochem Pharmacol 34: 295–300

    Article  PubMed  CAS  Google Scholar 

  18. Hüttner II, Gwebu ET, Panganamala RV, Sharma HM, Geer JC (1977) Fatty acids and their prostaglandin derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science 197: 289–291

    Article  PubMed  Google Scholar 

  19. E. A. Jaffe (1983) Production of PGI2 by cultured endothelial cells and smooth muscle cells. Circulation 86: 225.

    Google Scholar 

  20. Larrue J, Bricaud H, Sinzinger H (1984) Prostacyclin synthesis by proliferative aortic smooth muscle cells. Vasa 13: 311–318

    PubMed  CAS  Google Scholar 

  21. Loesberg C, van Wijk R, Zandbergen J, van Aken WG, van Mourik JA, de Groot PG (1985) Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E2. Exp Cell Res 160: 117–125

    Article  PubMed  CAS  Google Scholar 

  22. McCaun RL, Hagen PO, Fuchs JCA (1980) Aspirin and dipiridamole decrease intimai hyperplasia in experimental vein grafts. Am Surg 191: 138

    Google Scholar 

  23. Metke MP, Lie JT, Fuster V, Josa M, Kaye MP (1979) Reduction of intimai thickening in canine coronary bypass vein grafts with dipyridamole and aspirin. Am J Cardiol 43: 1144–1148

    Article  PubMed  CAS  Google Scholar 

  24. Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665

    Article  PubMed  CAS  Google Scholar 

  25. Morita I (1983) Regulation of cell growth by prostaglandins. Gan To Kagaku Ryoho 10: 1919–1929

    PubMed  CAS  Google Scholar 

  26. Nakao Y, Ooyama T, Chang WC (1982) Platelets stimulate aortic smooth muscle cell migration in vitro. Atherosclerosis 43: 143–150

    Article  PubMed  CAS  Google Scholar 

  27. Niewiarowski S, Paul D (1981) Platelet granule proteins with mitogenic and antiheparin activity. In: Gordon JL (ed) Platelets in biology and pathology/2. Elsevier, Amsterdam, pp 91–106

    Google Scholar 

  28. Pietila K, Moilanen T, Nikkari T (1980) Prostaglandins enhance the synthesis of glycosaminoglycans and inhibit the growth of rabbit aortic smooth muscle cells in culture. Artery 7: 509–518

    PubMed  CAS  Google Scholar 

  29. Ross R; Glomset JA (1976) The pathogenesis of atherosclerosis. N Engl J Med 295: 268–377

    Article  Google Scholar 

  30. R Ross (1981) The platelet-derived growth factor. Handbuch der experimentellen Pharmakologie, Vol 57: 133–159.

    CAS  Google Scholar 

  31. Sato Y, Hotta N, Sakamoto N, Matsuoko S, Ohishi N, Yagi K (1979) Lipid peroxide level in plasma of diabetic patients. Biochem Med 21: 104–108

    Article  PubMed  CAS  Google Scholar 

  32. Shimamoto T (1974) A new concept in atherogenesis and thrombogenesis and the treatment of atherosclerosis with an endothelial cell relaxant in cardiovascular disease. In: Russel HJ (ed) New concepts in diagnosis and therapy. Urban und Schwarzenberg, München, pp 361–392

    Google Scholar 

  33. Silberbauer K, Willvonseder R, Feigl W, Krisch K, Sinzinger H (1976) Morphologische und zellkinetische Untersuchungen an der Arterienwand nach Röntgenbestrahlung. Vasa 5: 215–219

    PubMed  CAS  Google Scholar 

  34. Silberbauer K, Sinzinger H, Winter M (1978) Prostacyclin production by vascular smooth muscle cells. Lancet i: 1356–1357

    Article  Google Scholar 

  35. Silberbauer K, Sinzinger H, Winter M (1979) Prostacyclin activity in rat kidney stimulated by angiotensin II. Br J Exp Pathol 60: 38–44

    PubMed  CAS  Google Scholar 

  36. Sinzinger H, Willvonseder R, Feigl W, Wicke L, Höfer R, Hernuss P (1975) Einflüsse experimentell induzierter Streßsituation auf die Gefäßwand des Kaninchens. Z Mikrosk Anat Forsch 89: 257–263

    PubMed  CAS  Google Scholar 

  37. Sinzinger H, Silberbauer K, Auerswald W (1980) Prostacyclin production by vascular smooth muscle and endothelial cells. Atherosclerosis V: 140–143

    Google Scholar 

  38. Sinzinger H, Kefalides A, Hoche C (1982) Is the platelet derived growth factor (PDGF) a main regulator in atherosclerosis? Circulation 66: 192

    Google Scholar 

  39. Sinzinger H, Fitscha P (1986) The principles and applications of treatment of atherosclerotic lesions with prostaglandins. Proc. Conf. on Radionucl. Label. Cell. Blood Elements, RSA Bloemfontein

    Google Scholar 

  40. Smith DL, Willis AL, Mahmud I (1984) Eicosanoid effects on cell proliferation in vitro: relevance to atherosclerosis. Prostaglandins Leukotrienes Med 16: 1–10

    Article  CAS  Google Scholar 

  41. Subbiah MTR; Dicke BA (1977) Effect of prostaglandin E2 and F on the activities of cholesteryl ester synthetase and cholesteryl ester hydrolases of pigeon aorta in vitro. Atherosclerosis 27: 107–111

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinzinger, H. (1986). Inhibition of Mitotic and Proliferative Activity of Smooth Muscle Cells by Prostaglandin E1 . In: Sinzinger, H., Rogatti, W. (eds) Prostaglandin E1 in Atherosclerosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71679-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71679-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17240-6

  • Online ISBN: 978-3-642-71679-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics