Behavior Genetics of Honeybees (Apis mellifera L.)

  • Robin F. A. Moritz
  • Christian Brandes


Behavioral genetic analysis in honeybees (Apis mellifera L.) allows for the documentation of gene expression in haploid and diploid individuals as well as in large groups. An example for the selection of learning behavior of individual workers illustrates the potential of the use of honeybees in behavioral genetics. Quantitative genetic models, originally designed for individual characters, have to be modified for all characters related to group behavior. The assembly of genotypes as well as interactions among the group members must be considered. The average intracolonial worker relationship, estimated in marker experiments, is a central issue for quantitative genetics of group characters.


Conditional Stimulus Apis Mellifera Honeybee Coloni Honeybee Worker Nestmate Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Bar Cohen, R.; Alpern, G.; and Bar Anan, R. 1978. Progeny testing and selecting Italian queens for brood area and honey production. Apidologie 9: 95–100.CrossRefGoogle Scholar
  2. (2).
    Bienefeld, K. 1986. Heritabilitatsschatzungen von Leistungseigenschaften bei der Honigbiene. Apidologie 17(4): in press.Google Scholar
  3. (3).
    Boch, R., and Morse, R.A. 1979. Individual recognition of queens by honey bee swarms. Ann. Entomol. Soc. Am. 72: 51–53.Google Scholar
  4. (4).
    Boch, R., and Morse, R.A. 1981. Effects of artificial odors and pheromones on queen discrimination by honey bees (Apis mellifera L.). Ann. Entomol. Soc. Am. 74: 66–67.Google Scholar
  5. (5).
    Boch, R., and Morse, R.A. 1982. Genetic factor in queen recognition odors of honey bees. Ann. Entomol. Soc. Am. 75: 654–656.Google Scholar
  6. (6).
    Brandes, Ch. Estimation of heritability of learning behaviour in honeybees (Apis mellifera capensis), submitted.Google Scholar
  7. (7).
    Brandes, Ch. Genetic differences of learning behavior in bees (Apis mellifera capensis), submitted.Google Scholar
  8. (8).
    Breed, M.D. 1981. Individual recognition and learning of queen odors by worker honey bees. Proc. Natl. Acad. Sci. USA 78: 2635–2637.Google Scholar
  9. (9).
    Breed, M.D. 1983. Nestmate recognition in honey bees. Anim. Behav. 31: 86–91.CrossRefGoogle Scholar
  10. (10).
    Breed, M.D. 1985. How honeybees recognize their nestmates: a re-evaluation from new evidence. Bee World 66: 113–119.Google Scholar
  11. (11).
    Breed, M.D.; Velthuis, H.H.W.; and Robinson, G.E. 1984. Do worker honey bees discriminate among unrelated and related larval phenotypes? Ann. Entomol. Soc. Am. 77: 737–739.Google Scholar
  12. (12).
    Breed, M.D.; Butler, L.; and Stiller, T.M. 1985. Kin discrimination by worker honey bees in genetically mixed groups. Proc. Natl. Acad. Sci. USA 82: 3058–3061.Google Scholar
  13. (13).
    Brockmann, H.J. 1984. The evolution of social behavior in insects. In Behavioral Ecology: An Evolutionary Approach, eds. J.R. Krebs and N.B. Davies. Oxford: Blackwell.Google Scholar
  14. (14).
    Collins, A.M.; Rinderer, T.E.; Harbo, J.R.; and Brown, M. 1984. Heritabilities and correlations for several characters in the honey bee (Apis mellifera L.). J. Hered. 75: 135–140.Google Scholar
  15. (15).
    Drescher, W. 1971. Selektionsversuch an einem Merkmal mit polygener Basis bei Apis mellifica L. 23rd Internat. Apic. Cong. Moscow., pp. 390–391. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  16. (16).
    El-Banby, M. 1967. Heritability estimates and genetic correlation for brood-rearing and honey production in the honeybee. XXIst Int. Apic. Cong., p. 498. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  17. (17).
    Falconer, D.S. 1981. Introduction to Quantitative Genetics. London, New York: Longman.Google Scholar
  18. (18).
    Getz, W.M.; Briickner, D.; and Parisian, Th.R. 1982. Kin structure and the swarming behavior of the honey bee Apis mellifera. Behav. Ecol. Sociobiol. 10: 265–270.Google Scholar
  19. (19).
    Getz, W.M., and Smith, K.B. 1983. Genetic kin recognition: honey bees discriminate between full and half sisters. Nature, 302: 147–148.CrossRefGoogle Scholar
  20. (20).
    Goncalves, L.S. 1972. Investigations of the morphological characteristic ”number of hamuli“ in Apis mellifica. In Controlled Mating and Selection of the Honey Bee. International Symposium, Lunz am See, pp. 70–73. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  21. (21).
    Grankin, N.N. 1978. Analytische Auslese zentralrussischer Bienen in der Region Orlow. In Genetik, Selektion und Reproduktion bei der Honigbiene, eds. V. Harnaj and G.D. Bilash, pp. 249–251. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  22. (22).
    Griffing, B. 1982. A theory of natural selection incorporating interaction among individuals. X. Use of groups consisting of a mating pair together with haploid and diploid caste members. J. Theor. Biol 95: 199–223.Google Scholar
  23. (23).
    Hamilton, W.D. 1964. The genetical evolution of social behavior I and II. J. Theor. Biol. 7: 1–52.PubMedCrossRefGoogle Scholar
  24. (24).
    Hemmling, C.; Koeniger, N.; and Ruttner, F. 1979. Quantitative Bestimmung der 9–Oxodecensäure im Lebenszyklus der Kapbiene ( Apis mellifera capensis Escholtz ). Apidologie 10: 227–240.Google Scholar
  25. (25).
    Hillesheim, E., and Moritz, R.F.A. 1986. Genetic variance of physiological characters of workers in the Cape honeybee (Apis mellifera capensis Esch.) J. Apic. Res., submitted.Google Scholar
  26. (26).
    Istock, C.A. 1983. The extent and consequences of heritable variation for fitness characters. In Population Biology. Retrospect and Prospect., eds. Ch.E. King and P.S. Dawson, Proc. Annu. Biol. Colloq., Vol. 41, pp. 61–96. New York: New York Columbia University Press.Google Scholar
  27. (27).
    Kalmus, H., and Ribbands, C.R. 1952. The origin of the odors by which honeybees distinguish their companions. Proc. Roy. Soc. B 140: 50–59.Google Scholar
  28. (28).
    Kerr, W.E.; Martinho, M.R.; and Concalves, L. 1980. Kinship selection in bees. Rev. Bras. Genet. 3: 339–344.Google Scholar
  29. (29).
    Koeniger, G. 1986. Reproduction and mating behavior. In Bee Breeding and Genetics, ed. T.E. Rinderer, pp. 255–280. New York: Academic Press.Google Scholar
  30. (30).
    Kriwzow, N.I. 1978. Erblichkeit und Reproduzierbarkeit ökonomisch wertvoller Merkmale bei der zentralrussischen Biene. In Genetik, Selektion und Reproduktion bei der Honigbiene, eds. V. Harnaj and G.D. Bilash, pp. 96–98. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  31. (31).
    Kulincevic, J.M., and Rothenbuhler, W.C. 1975. Selection for resistance and susceptibility to hairless-black syndrome in the honey bee. J. Invert. Path. 25: 289–295.Google Scholar
  32. (32).
    Kulincevic, J.M., and Rothenbuhler, W.C. 1982. Selection for length of life in the honeybee ( Apis mellifera ). Apidologie 13: 347–352.Google Scholar
  33. (33).
    Laidlaw, H.H., and Page, R.E. 1984. Polyandry in honeybees (Apis mellifera L.). Sperm utilization and intracolony relationships. Genetics 108: 985–997.PubMedGoogle Scholar
  34. (34).
    Lindauer, M. 1952. Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z. Vergl. Physiol. 34: 299–345.CrossRefGoogle Scholar
  35. (35).
    Mackensen, O., and Nye, W.P. 1966. Selecting and breeding honeybees for collecting alfalfa pollen. J. Apic. Res. 5: 79–86.Google Scholar
  36. (36).
    Malkow, W.W.; Timoschonowa, A.E.; and Tschjapligin, W.P. 1978. Variabilität und Vererbung der ökonomisch wertvollsten Charakteristika bei den Bienen des Oka-Ökotypus. In Genetik, Selektion und Reproduktion bei der Honigbiene, eds. V. Harnaj and G.D. Bilash, pp. 196–198. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  37. (37).
    Maynard Smith, J. 1964. Group selection and kin selection: A rejoinder. Nature 201: 1145–1147.Google Scholar
  38. (38).
    Milne, C.P. 1985a. An estimate of the heritability of worker longevity or length of life in the honeybee. J. Apic. Res. 24: 137–139.Google Scholar
  39. (39).
    Milne, C.P. 1985b. An estimate of the heritability of the corbicular area of the honeybee. J. Apic. Res. 24: 137–139.Google Scholar
  40. (40).
    Milne, C.P., and Friars, G.W. 1984. An estimate of the heritability of honeybee pupal weight. J. Heredity 75: 509–510.Google Scholar
  41. (41).
    Moritz, R.F.A. 1981. Der Einfluß der Inzucht auf die Fitness der Drohnen von Apis mellifera carnica. Apidologie 12: 41–55.CrossRefGoogle Scholar
  42. (42).
    Moritz, R.F.A. 1983. Homogeneous mixing of honeybee semen. J. Apic. Res. 22: 249–255.Google Scholar
  43. (43).
    Moritz, R.F.A. 1985. Heritability of the postcapping stage in Apis mellifera L. and its relation to varroatosis resistance. J. Hered. 76: 267–270.Google Scholar
  44. (44).
    Moritz, R.F.A. 1986a. Intracolonial worker relationship and sperm competition in the honey bee ( Apis mellifera L. ). Experientia 42: 455–458.Google Scholar
  45. (45).
    Moritz, R.F.A. 1986b. Estimating the genetic variance of group characters: social behaviour of honeybees (Apis mellifera L.) Theor. Appl. Genet., in press.Google Scholar
  46. (46).
    Moritz, R.F.A., and Klepsch, A. 1985. Estimation heritabilities of worker characters: a new approach using laying workers of the Cape honeybee ( Apis mellifera capensis Esch. ). Apidologie 16: 47–56.CrossRefGoogle Scholar
  47. (47).
    Moritz, R.F.A., and Hillesheim, E. 1985. Inheritance of dominance in honeybees (Apis mellifera capensis Esch.). Behav. Ecol. Sociobiol. 17: 87–89.Google Scholar
  48. (48).
    Moritz, R.F.A., and Southwick, E.E. 1986a. Analysis of queen recognition by honey bee workers (Apis mellifera L.) in a metabolic bio-assay. Exp. Biol., in press.Google Scholar
  49. (49).
    Moritz, R.F.A., and Southwick, E.E. 1986b. Phenotype interaction in groups of honey bees (Apis mellifera L.). Behav. Genet., submitted.Google Scholar
  50. (50).
    Moritz, R.F.A.; Southwick, E.E.; and Breh, M. 1985. A metabolic test for the quantitative analysis of alarm behavior of honey bees. J. Exp. Zool. 235: 1–5.CrossRefGoogle Scholar
  51. (51).
    Moritz, R.F.A.; Southwick, E.E.; and Harbo, J.B. 1986. Genetic analysis of defensive behaviour of honeybees (Apis mellifera L.) in a field test. Apidologie, in press.Google Scholar
  52. (52).
    Noonan, K.C. 1985. Studies of worker recognition of brood in the honey bee (Apis mellifera). Ph.D. thesis. University of Wisconsin, Madison.Google Scholar
  53. (53).
    Oldroyd, B., and Moran, C. 1983. Heritability of worker characteristics in the honeybee (Apid mellifera). Aust. J. Biol. Sci. 362: 323–332.Google Scholar
  54. (54).
    Page, R.E., and Erickson, E.H. 1984. Selective rearing of queens by worker honey bees: kin or nestmate recognition. Ann. Entomol. Soc. Am. 77: 578–580.Google Scholar
  55. (55).
    Page, R.E., and Erickson, E.H. 1986. Kin recognition and virgin queen acceptance by worker honey bees (Apis mellifera L.). Anim. Behav., in press.Google Scholar
  56. (56).
    Page, R.E.; Kimsey, R.B.; and Laidlaw, H.H. 1984. Migration and dispersal of spermatozoa in spermathecae of queen honeybees ( Apis mellifera L.). Experientia 40: 182–184.CrossRefGoogle Scholar
  57. (57).
    Page, R.E., and Metealf, B. 1982. Multiple mating, sperm utilization, and social evolution. Am. Nat. 119: 263–281.CrossRefGoogle Scholar
  58. (58).
    Pirchner, F.; Ruttner, F.; and Ruttner, H. 1960. Erbliche Unterschiede zwischen Ertragseigenschaften von Bienen. XI. Internat. Congr. Entomol., Vienna, 2: 510–516.Google Scholar
  59. (59).
    Renner, M. 1960. Das Duftorgan der Honigbiene und die physiologische Bedeutung ihres Lockstoffes. Z. vergl. Physiol. 43: 411–468.Google Scholar
  60. (60).
    Rinderer, T.E. 1977. Measuring the heritability of characters of honeybees. J. Apic. Res. 16: 95–98.Google Scholar
  61. (61).
    Rinderer, T.E.; Collins, A.M.; and Brown, M.A. 1983. Heritabilities and correlations of the honey bee: response to Nosema Apis, longetivity, and alarm response to isopentyl acetate. Apidologie 14: 79–85.CrossRefGoogle Scholar
  62. (62).
    Rösch, G.A. 1925. Untersuchungen über die Arbeitsteilung im Bienenstaat. I. Die Tätigkeiten im normalen Bienenstaate und ihre Beziehungen zum Alter der Arbeitsbienen. Z. Vergl. Physiol. 12: 571–631.Google Scholar
  63. (63).
    Rothenbuhler, W.C. 1964. Behavior genetics of nestcleaning in honeybees IV. Responses of Fl and backcross generations to disease-killed brood. Am. Zool. 4: 111–123.Google Scholar
  64. (64).
    Rothenbuhler, W.C.; Kulincevic, J.M.; and Thompson, V.C. 1979. Successful selection of honeybees for fast and slow hoarding of sugar syrup in the laboratory. J. Apic. Res. 18: 272–278.Google Scholar
  65. (65).
    Ruttner, F. 1976. Die Bienenrassen Afrikas. XXVth Internat. Apic. Congr., pp. 344–364. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  66. (66).
    Ruttner, F., and Hesse, B. 1981. Rassenspezifische Unterschiede in der Ovarentwicklung un Eiablage von weisellosen Arbeiterinnen der Honigbiene Apis mellifera L. Apidologie 12: 159–183.CrossRefGoogle Scholar
  67. (67).
    Ruttner, H. 1980. Haltung der Königinnen während der Paarungszeit. In Königinnenzucht, ed. F. Ruttner, pp. 225–268. Bucharest, Rumania: Apimondia Publishing House.Google Scholar
  68. (68).
    Seeley, T.D. 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11: 287–293.Google Scholar
  69. (69).
    Soller, M., and Bar Cohen, R. 1967. Some observations on the heritability and genetic correlation between honey production and brood area in the honeybee. J. Apic. Res. 6: 37–43.Google Scholar
  70. (70).
    Taber, S. 1955. Sperm distribution in the spermatheca of multiple-mated queen honey bees. J. Econ. Entomol. 48: 522–525.Google Scholar
  71. (71).
    Thronhill, R., and Alcock, J. 1983. The Evolution of Insect Mating Systems. Cambridge, Mass.: Harvard University Press.Google Scholar
  72. (72).
    Tucker, K.W. 1980. Tolerance to carbaryl in honeybees increased by selection. American Bee Journal 120: 36–46.Google Scholar
  73. (73).
    Velthuis, H.H.W. 1970. Ovarian development in Apis mellifera worker bees. Ent. Exp. Appl. 13: 377–394.Google Scholar
  74. (74).
    Verma, S., and Ruttner, F. 1983. Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee ( Apis mellifera capensis ESCHOLTZ ). Apidologie 14: 41–57.Google Scholar
  75. (75).
    Willham, R.L. 1956. The covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19: 18–27.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heildelberg 1987

Authors and Affiliations

  • Robin F. A. Moritz
    • 1
  • Christian Brandes
    • 1
    • 2
  1. 1.Institut für Bienenkunde (Polytechnische Gesellschaft)Johann Wolfgang Goethe UniversitätFrankfurt/M., Oberursel/Ts.Germany
  2. 2.Institut für TierphysiologieNeurobiologie der Freie Universität BerlinBerlin 33Germany

Personalised recommendations