Processing of Visual Information in the Honeybee Brain

  • Horst Hertel
  • Ulrike Maronde

Abstract

Knowledge about processing of visual information in the bee brain mainly comes from investigations on higher order interneurons. The first set of interneurons, the monopolar cells of the lamina, is almost unexplored. The second stage, the medulla, is involved in coding spatial and color contrast, and in detecting directionally unselective movement. In the third optic neuropile, the lobula, the direction of movement of a stimulus is coded. This information is transferred to descending interneurons in the ventro-lateral protocerebrum. Some widefield extrinsic medulla neurons display color coding properties with an opponent reaction to green and UV-light stimuli.

Keywords

Cobalt Retina Stratification Neurol Serpentine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    DeVoe, R.; Kaiser, W.; Ohm, J.; and Stone, L. 1982. Horizontal movement detectors of honeybees: directionally-selective visual neurones in the lobula and brain. J. comp. Physiol. 147: 155–170.Google Scholar
  2. (2).
    Gronenberg, W. 1984. Das Protocerebrum der Honigbiene im Bereich des Pilzkörpers — eine neurophysiologisch-anatomische Charakterisierung. Ph.D. Dissertation, Freie Universität Berlin.Google Scholar
  3. (3).
    Hertel, H. 1980. Chromatic properties of identified interneurons in the optic lobes of the bee. J. comp. Physiol. 137: 215–231.CrossRefGoogle Scholar
  4. (4).
    Homberg, U. 1982. Das mediane Protocerebrum der Honigbiene (Apis mellifica) im Bereich des Zentralkorpers: Physiologische und morphologische Charakterisierung. Ph.D. Dissertation, Freie Universität Berlin.Google Scholar
  5. (5).
    Kaiser, W. 1974. The spectral sensitivity of the honey bee’s optomotor walking response. J. comp. Physiol. 90: 405–408.CrossRefGoogle Scholar
  6. (6).
    Kien, J., and Menzel, R. 1977. Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. comp. Physiol. 113: 35–53.CrossRefGoogle Scholar
  7. (7).
    Laughlin, S. 1984. The roles of parallel channels in early visual processing by the arthropod compound eye. In Photoreception and Vision in Invertebrates, ed. M.A. Ali. New York: Plenum Press.Google Scholar
  8. (8).
    Menzel, R. 1974. Spectral sensitivity of monopolar cells in the bee lamina. J. comp. Physiol. 93: 337–346.CrossRefGoogle Scholar
  9. (9).
    Menzel, R., Ventura, D.F., Hertel, H., de Souza, J.M., Greggers, U. 1986. Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J. comp. Physiol. 158: 165–177.Google Scholar
  10. (10).
    Meyer, E.P., Matute, C., Streit, P., and Nässei, D.R. 1986. Insect optic lobe neurons identifiable with monoclonal antibodies to GAB A. Histochemistry 84: 207–216.PubMedCrossRefGoogle Scholar
  11. (11).
    Michael, C.R. 1978. Color vision mechanisms in monkey striate cortex: Dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41 (3): 572–588.PubMedGoogle Scholar
  12. (12).
    Mobbs, P.G. 1984. Neural networks in the mushroom bodies of the honeybee. J. Insect Physiol. 30 (1): 43–58.CrossRefGoogle Scholar
  13. (13).
    Ribi, W.A. 1974. Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tissue Res. 148: 277–286.Google Scholar
  14. (14).
    Ribi, W.A. 1981. The first optic ganglion of the bee. IV. Synaptic fine structure and connectivity patterns of receptor cell axons and first order interneurones. Cell Tiss. Res. 215: 443–464.Google Scholar
  15. (15).
    Ribi, W.A., and Scheel, M. 1981. The second and third optic ganglia of the worker bee. Cell Tissue Res. 221: 17–43.PubMedCrossRefGoogle Scholar
  16. (16).
    Riehle, A. 1981. Color opponent neurons of the honeybee in a heterochromatic flicker test. J. comp. Physiol. 142: 81–88.Google Scholar
  17. (17).
    Schäfer, S. 1984. Charakterisierung extrinsischer Großfeldneuronen aus der Medulla der Honigbiene (Apis mellifera). Diplomarbeit, Freie Universität Berlin. FB23.Google Scholar
  18. (18).
    Schäfer, S., and Bicker, G. 1986. Distribution of GABA-like immunoreactivity in the brain of the honeybee. J. Comp. Neurol. 246: 287–300.PubMedCrossRefGoogle Scholar
  19. (19).
    Witthöft, W. 1967. Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morph. Tiere 61: 160–184.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heildelberg 1987

Authors and Affiliations

  • Horst Hertel
    • 1
  • Ulrike Maronde
    • 1
  1. 1.Institut für Tierphysiologie, NeurobiologieFreie Universität BerlinBerlin 33Germany

Personalised recommendations