Skip to main content

Chromatin, Solution Scattering and Perception

  • Conference paper
Book cover Biophysics and Synchrotron Radiation

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 2))

  • 167 Accesses

Abstract

In the present paper we draw a parallel between small angle scattering (SAS) experiments and visual perception and illustrate the origin and importance of the: “personal equation” (see Gregory ref. 1) in the design of experiments (i. e. manipulations designed to test a hypothesis based on a priori knowledge) as opposed to measurements (i. e. manipulations designed to obtain a numerical value without reference to its meaning). Similar considerations probably apply to most experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gregory R., (1984) Mind in Science. Penguin (Peregrine) Books, Harmondsworth, UK.

    Google Scholar 

  2. Poggio T., Torre V., Koch C., (1985) Computational vision and regularization theory. Nature 317 314–319.

    Article  PubMed  CAS  Google Scholar 

  3. Perez-Grau L., Bordas J., Koch M.H.J., (1984) Synchrotron radiation X-ray scattering study on solutions and gels. Nucleic Acid Res 12, 2987–2995.

    Article  PubMed  CAS  Google Scholar 

  4. Bordas J., Perez-Grau L., Koch M.H.J., Nave C., Vega M.C., (1986) The superstructure of chromatin and its condensation mechanism: I Synchrotron radiation X-ray scattering results. Eur J. Biophys. 13, 157–174.

    Article  CAS  Google Scholar 

  5. Bordas J., Perez-Grau L., Koch M.H.J., Nave C., Vega M.C., (1986) The superstructure of chromatin and its condensation mechanism: II Theoretical analysis of the X-ray scattering patterns and model calculations. Eur. J. Biophys. 13, 175–186.

    Article  CAS  Google Scholar 

  6. Koch M.H.J., Vega M.C., Sayers Z., Michon A.M., (1986) The superstructure of chromatin and its condensation mechanism. HI: Effect of monovalent and divalent cations, X-ray solution scattering and hydrodynamic studies. Eur. J. Biophys. (in press).

    Google Scholar 

  7. Sperling L., Tardieu A., (1976) The mass per unit lenght of chromatin by low-angle X-ray scattering. FEBS Lett. 64, 89–91.

    Article  PubMed  CAS  Google Scholar 

  8. Finch J.T., Klug A., (1976) Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. Usa 73, 1879–1901.

    Article  Google Scholar 

  9. Baudy P., Bram S., (1978) Chromatin fiber dimensions and nucleosome orientation: a neutron scattering investigation. Nucleic Acid Res 5, 3698–3713.

    Google Scholar 

  10. Hollandt H., Notbohm H., Riedel F., Harbers E., (1979) Studies of the structure of isolated chromatin in three different solvents. Nucleic Acid Res 6, 2017–2027.

    Article  PubMed  CAS  Google Scholar 

  11. Suau P., Bradbury E.M., Baldwin J.P., (1979) Higher-order structures of chromatin in solution. Eur. J. Biochem. 97: 593–6602.

    Article  PubMed  CAS  Google Scholar 

  12. Brust R., Harbers E., (1981) Structural investigations on Isolated Chromatin of Higher-Order Organization. Eur J. Biochem. 117, 609–615.

    Article  PubMed  CAS  Google Scholar 

  13. Notbohm H., (1986) Comparative Studies on the structure of soluble and insoluble chromatin from chicken erythrocytes. Int. J. Biol. Macromol. 8, 114–120.

    Article  CAS  Google Scholar 

  14. Transition of chromatin from the “10 nm” Lower Order Structure, to the “30 nm” Higher Order Structure, as followed by Small Angle X-ray Scattering. J. Mol Biol 193: 709–721.

    Google Scholar 

  15. Thoma F., Koller T., Klug A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J. Cell Biol 83, 403–427.

    Article  PubMed  CAS  Google Scholar 

  16. Reich M., (1982) PhD Thesis Weizmann Institute of Science - Rehovoth.

    Google Scholar 

  17. Whevell (1847) The Philosophy of the Inductive Sciences, 2nd Ed., London.

    Google Scholar 

  18. Toynbee A., (1972) A study of History Weathervane Books: New York p 486

    Google Scholar 

  19. Gombrich E.H., (1960) “Art and Illusion” Phaidon Press, London, p. 225. Greulich K.O., Wachtel E., Ausio J., Seger D., Eisenberg H., (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koch, M.H.J., Sayers, Z. (1987). Chromatin, Solution Scattering and Perception. In: Bianconi, A., Congiu Castellano, A. (eds) Biophysics and Synchrotron Radiation. Springer Series in Biophysics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71490-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71490-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71492-4

  • Online ISBN: 978-3-642-71490-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics