Advertisement

Energetische Aspekte bei der Therapie der Herzinsuffizienz. Einfluß von Arbeitsbedingungen und von positiv inotropen Substanzen

  • Ch. Holubarsch
  • G. Hasenfuss
  • E. Blanchard
  • L. A. Mulieri
  • N. R. Alpert
  • H. Just
Conference paper

Zusammenfassung

Bei der Koronarinsuffizienz ohne manifeste Herzinsuffizienz steht die Drosselung des myokardialen Energieverbrauchs im Vordergrund der therapeutischen Überlegungen und Bemühungen. Dabei kann eine Verminderung der Pumpfunktion des Herzens durchaus in Kauf genommen werden. Bei der Therapie der Herzinsuffizienz dagegen gilt es, die Pumpfunktion des Herzens zu verbessern. Dies sollte jedoch - unabhängig von der Ätiologie der Herzinsuffizienz - möglichst schonend geschehen, d. h. unter möglichst optimalen energetischen Bedingungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alpert NR, Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circ Res 50: 491–500PubMedGoogle Scholar
  2. Alpert NR, Mulieri LA, Litten RZ, Holubarsch C (1984) A myothermal analysis of the myosin cross-bridge cycling rate during isometric tetanus in normal and hypothyrotic rat hearts. Eur Heart J 5 (Suppl F): 3–11PubMedGoogle Scholar
  3. Blanchard E, Mulieri LA, Alpert NR (1984) The effect of 2,3-butanedionemonoxime (BDM) on the relation between initial heat and mechanical output and on the activity of the contractile apparatus of rat papillary muscle. Conference on Muscle Energetics, University of Vermont.Google Scholar
  4. Gibbs CL (1978) Cardiac energetics. Physiol Rev 58: 174–254PubMedGoogle Scholar
  5. Hasenfuß G, Blanchard E, Mulieri LA, Alpert NR, Just H, Holubarsch C (in press) Isometric force development of normal and hypothyrotic rat myocardium as influenced by isoproterenol and UDCG-115 at high and low calcium concentrations. Drug ResearchGoogle Scholar
  6. Hill AV (1964) The variation of total heat production in a twitch with velocity of shortening. Proc Roy Soc B 159: 596–605CrossRefGoogle Scholar
  7. Hoh JFY, Rosmanith S (1983) Crossbridge dynamics in rat papillary muscles containing V1 and V3 isomyosins: Effect of adrenaline. J Mol Cell Cardiol 15 (Suppl 2): 65CrossRefGoogle Scholar
  8. Holubarsch C, Alpert NR, Goulette R, Mulieri LA (1982) Heat production during hypoxic contracture of rat myocardium. Circ Res 51: 777–786PubMedGoogle Scholar
  9. Holubarsch C, Goulette RP, Mulieri LA, Alpert NR (1983) Heat liberation in experimentally induced tetanic contractions of myocardium from normal and Goldblatt rats. In: Jacob R (ed) Cardiac adaptation to hemodynamic overload, training and stress. Steinkopff, Darmstadt, pp 158–166Google Scholar
  10. Holubarsch C, Goulette RP, Litten RZ, Martin BJ, Maulieri LA, Alpert NR (1985a) The economy of isometric force development, myosin isoenzyme pattern, and myofibrillar ATPase activity in normal and hypothyrotic rat myocardium. Circ Res 56: 78–86PubMedGoogle Scholar
  11. Holubarsch C, Litten RZ, Mulieri LA, Alpert NR (1985b) Verbesserte Ökonomie der myokar- dialen Spannungsentwicklung durch Hypothyreose und in vitro Temperatursenkung. Z Kardiol 74 (Suppl 3): 372Google Scholar
  12. Holubarsch C, Hasenfuß G, Körner M, vHerrath M, Bonzel T, Tarnowska R, Just H (1985c) Myocardial performance and efficiency as assessed by energetic parameters derived from pressure- volume relations and wall thickness in human ventricles. Z Kardiol (Suppl 7)Google Scholar
  13. Honerjäger P, Heiss A, Schäfer-Korting M, Schönsteiner G, Reiter M (1984) UDCG-115 - a cardiotonic pyridazinone which elevates cyclic AMP and prolongs action potential in guinea-pig papillary muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 325: 259–269CrossRefGoogle Scholar
  14. Kranias EG, Garvey JL, Srivastava RD, Solaro RJ (1985) Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with iso- prenaline. Biochem J 226: 113–121PubMedGoogle Scholar
  15. Mirsky I (1979) Elastic properties of the myocardium: A quantitative approach with physiological and clinical applications. In: Berne RM (ed) Handbook of physiology, Sect 2: The cardiovascular system. American Physiological Society, Washington DC, pp 497–531Google Scholar
  16. Mulieri LA, Luhr G, Trefry J, Alpert NR (1977) Metal-film thermopiles for use with rabbit right ventricular papillary muscles. Am J Physiol 233: C146-C156PubMedGoogle Scholar
  17. Rüegg JC (1985) Effects of UDCG-115 in isolated contractile structures from heart muscle. Symposium on controversial issues in cardiac pathophysiology, TübingenGoogle Scholar
  18. Solaro RJ, Rüegg JC (1982) Stimulation of calcium-binding and ATPase activity of dog cardiac myofibrils by ARL 115 BS, a novel cardiotonic agent. Circ Res 51: 290–294PubMedGoogle Scholar
  19. Winegrad S, Weisberg A, Lin LE, McClellan G (1986) Adrenergic regulation of myosin adenosine triphosphatase activity. Circ Res 58: 83–95PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ch. Holubarsch
    • 1
  • G. Hasenfuss
  • E. Blanchard
  • L. A. Mulieri
  • N. R. Alpert
  • H. Just
  1. 1.Medizinische Universitäts-Klinik, Innere Medizin III - KardiologieKlinikum der Albert-Ludwigs-UniversitätFreiburg i. Br.Germany

Personalised recommendations