Advertisement

Multispecies Metal Monitoring in Tropical Brazilian Estuaries

  • U. Seeliger
  • M. Wallner

Abstract

The concept of biological metal monitoring in coastal waters has been extensively reviewed in recent years (Phillips 1977, 1980), pointing to benthic macroalgae as the most suitable group of organisms to test for metals in solution (Myklestad et al. 1978; Förstner and Wittmann 1979; Phillips 1980; Levine 1983; Jensen 1984) as well as permitting interpretation of data in a biological context (Seeliger and Cordazzo 1982; Luoma 1983). Benthic algae may not combine all of the increasingly complex requirements for monitoring (Portmann 1976; Phillips 1977) but they furnish a continuous, time-integrated and semi-quantitative evaluation of dissolved ionic metal species in the water at a selected location (Seeliger and Edwards 1977; Melhuus et al. 1978; Seeliger and Knak 1982) and significantly simplify analytical procedures due to their tissue metal enrichment. In spite of this knowledge they have rarely been employed for baseline studies in polluted and many still unpolluted coastal waters probably because the necessity for combined field and experimental studies (Phillips 1980) has with few exceptions (Seeliger and Cordazzo 1982) been neglected in the past.

Keywords

Ionic Metal Concentration Sulfated Polysaccharide Benthic Alga Lower Estuary Patos Lagoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coutinho R, Seeliger U (1984) The horizontal distribution of the benthic algal flora in the Patos Lagoon estuary, Brazil, in relation to salinity, substratum and wave exposure. J Exp Mar Biol Ecol 80: 247–257CrossRefGoogle Scholar
  2. Cross FA, Sunda WG (1978) Relationship between bioavailability of trace metals and geochemical processes in estuaries. In: Wiley ML (ed) Estuarine interactions. Academic Press, New York, p 429Google Scholar
  3. Feely RA, Curl H (eds) (1979) Trace metals and marine production processes. NOAA Spec Rept, US Dept Comm, WashingtonGoogle Scholar
  4. Forstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, p 485Google Scholar
  5. Fuge R, James KH (1974) Trace metal concentrations in Fucus from the Bristol Channel. Mar Pollut Bull 5: 9–12CrossRefGoogle Scholar
  6. Hall A (1981) Copper accumulation in copper-tolerant and non-tolerant populations of the marine fouling alga, Ectocarpus siliculosus (Dillw.) Lyngbye. Botanica mar 24: 223–228CrossRefGoogle Scholar
  7. Haug A (1961) The affinity of some divalent metals to different types of alginates. Acta Chem Scand 15: 1794–1795CrossRefGoogle Scholar
  8. Jensen A (1984) Marine ecotoxicological tests with seaweeds. In: Persoone G, Jaspers E, Claus C (eds) Ecotoxicological testing for the marine environment, vol 1. State University of Ghent and Institute of Marine Scientific Research, Bredene, Belgium, p 181Google Scholar
  9. Knak R, Seeliger U (1982) Revisao e recomendapoes para anälise de mercürio e cobre no ambiente marinho e estuarino. Atlantica Doc Tec 3: 1–27Google Scholar
  10. Lacerda LD, Teixeira VL, Guimaraes JRD (1985) Seasonal variation of heavy metals in seaweeds from Conceipaode Jacarei, Brazil. Botanicamar28: 339–343Google Scholar
  11. Levine HG (1983) The use of seaweeds for monitoring coastal waters. In: Shubert LE (ed) Algae as ecological indicators. Academic Press, New York, p 199Google Scholar
  12. Levring T, Hoppe HA, Schmid OJ (1969) Marine algae. Cram, De Gruyter & Co, Hamburg, p 421Google Scholar
  13. Luoma SN (1983) Bioavailability of trace metals to aquatic organisms-A review. Sci Total Environ 28: 1–22Google Scholar
  14. Mackie W, Preston RD (1974) Cell wall and intercellular region polysaccharides. In: Stewart WDP (ed) Algal physiology and biochemistry. University California Press, Berkeley, p 40Google Scholar
  15. Melhuus A, Scip KL, Scip HM (1978) A preliminary study of the use of benthic algae as biological indicators of heavy metal pollution in Sorfjorden, Norway. Environ Pollut 15: 101–107CrossRefGoogle Scholar
  16. Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters. Springer, Berlin Heidelberg New York, p 267CrossRefGoogle Scholar
  17. Myklestad S, Eide I, Melsom S (1978) Exchange of heavy metals in Ascophy/lum nodosum (L.) Le Fol. in situ by means of transplanting experiments. Environ Pollut 16: 277–284CrossRefGoogle Scholar
  18. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic Press, New York, p 219Google Scholar
  19. Phillips DJH (1977) The use of biological indicator organisms to monitor metal pollution in marine and estuarine environments — A review. Environ Pollut 13: 281–317CrossRefGoogle Scholar
  20. Phillips DJH (1980) Quantitative aquatic biological indicators. Applied Science Publishers LTD, London, p 487Google Scholar
  21. Portman JE (ed) (1976) Manual on methods in aquatic environment research. Part 2 — Guidelines for the use of biological accumulators in marine pollution monitoring. FAO Fish Tech Pap 150Google Scholar
  22. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56: 99–151CrossRefGoogle Scholar
  23. Reed RH, Moffat L (1983) Copper toxicity and copper tolerance in Entero- morphacompressa ( L.) Grev. J Exp Mar Biol Ecol 69: 85–103CrossRefGoogle Scholar
  24. Romesburg HC (1984) Cluster analysis for researchers. Wadsworth Inc., Belmond, p 334Google Scholar
  25. Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York, p 349Google Scholar
  26. Seeliger U, Edwards P (1977) Correlation coefficients and concentration factors of copper and lead in seawater and benthic algae. Mar Pollut Bull 8: 16–19CrossRefGoogle Scholar
  27. Seeliger U, Edwards P (1979) Fate of biologically accumulated copper in growing and decomposing thalli of two benthic red marine algae. J mar biol Ass UK 59: 227–238CrossRefGoogle Scholar
  28. Seeliger U, Cordazzo C (1980) Criterios para construcao de uma sala de cultivos. Atlantica 4: 73–78Google Scholar
  29. Seeliger U, Cordazzo C (1982) Field and experimental evaluation of Enteromorpha sp. as a quali-quantitative monitoring organism for copper and mercury in estuaries. Environ Pollut29: 197–206Google Scholar
  30. Seeliger U, Knak R (1982) Estuarine metal monitoring in southern Brazil. Mar Pollut Bull 13: 253–254CrossRefGoogle Scholar
  31. Seeliger U, Lacerda LD (1986) Uptake and release of copper and mercury by the alga Ceramium brasih’ense Joly ( Rhodophyta, Ceramiales). Rev Bras Bot 9: 63–68Google Scholar
  32. Snedecor GW, Cochran WG (1980) Metodos estatisticos. Compania Editorial Continental SA, Mexico, p 703Google Scholar
  33. Sokal R, Rohlf FJ (1981) Biometry. WH Freeman and Co., San Francisco, p 776Google Scholar
  34. Stolzberg RG (1975) Ammonium-pyrrolidinecarbodithionate methyl isobutylketone extraction systems for some trace metals in seawater. In: Gibb TRP (ed) Analytical methods in oceanography., American Chemical Society, Washington, p 30CrossRefGoogle Scholar
  35. Tanaka Y, Stara JF (1979) Algal polysaccharides: Their potential use to prevent chronic metal poisoning. In: Hoppe HA, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science. Walter de Gruyter, Berlin, p 525Google Scholar
  36. Thiele H, Andersen G (1955) lonotrope Gele von Polyuronsäuren. Kolloidzeitsch 140: 76–102Google Scholar
  37. Volesky B, Zajic JE, Knettig E (1970) Algal products. ImZajic JE (ed) Properties and products of algae. Plenum Press, New York, p 49Google Scholar
  38. Von Stosch HA (1963) Wirkung von Arsenit auf Meeresalgen in Kultur. In: Virville AD, Feldman J (eds) Proceedings of the International Seaweed Symposium, Biarritz, 1961, p 167Google Scholar
  39. Wilkinson M (1980) Estuarine benthic algae and their environment: A Review. In: Price JH, Irvine DEG, Farnham WF (eds) The shore enviroment, vol 2. Academic Press, New York, p 425Google Scholar
  40. Wilkinson M (1981) Survival strategies of attached algae in estuaries. In: Jones NV, Wolff WJ (eds) Feeding and survival strategies of estuarine organisms. Plenum Press, New York, p 29Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • U. Seeliger
    • 1
  • M. Wallner
    • 2
  1. 1.Dept. de OceanografiaUniversidade do Rio GrandeRio GrandeBrazil
  2. 2.Centro de Pesquisa e Desenvolvimento (CEPED)PROTAMCamaçariBrazil

Personalised recommendations