Three-Dimensional Structure of Haemocyanin from the Spiny Lobster, Panulirus Interruptus, at 3.2 Å Resolution

  • Anne Volbeda
  • Wim G. J. Hol

Abstract

Haemocyanins are the non-haem, copper-containing oxygen transporting molecules occurring freely dissolved in the haemolymph of a large number of invertebrate species. The molecular architectures of the two known classes of haemocyanins are entirely different. Molluscan haemocyanins have the form of cylinders, with 10–20 subunits forming the complete molecules with molecular weights up to about ten million daltons. The subunits are made up by maximally 8 “repeated” domains, each of which has one dinuclear copper site. Arthropodan haemocyanins are composed of hexamers, or multi-hexamers, with individual subunits having molecular weights in the order of 75.000 daltons, each subunit containing one pair of copper ions. Complete molecules range from single hexamers of ~ 460.000 daltons to octa-hexamers with molecular weights of something like 3.7 million. All haemocyanins are thus large molecules, but some are larger than others (1–3).

Keywords

Sugar Hydrate Hydroxyl Carbohydrate Tyrosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Bruggen, E.F.J., Schutter, W.G., Van Breemen, J.F.L., Bijlholt, M.M.C. and Wichertjes, T. in “Electron Microscopy of Proteins”, M. Harris (ed.), Academic Press, New York, pp. 1–37 (1981).Google Scholar
  2. 2.
    Van Holde, K.E. and Miller, K.I., Q. Rev. Biophys. 15, 1–129 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Ellerton, H.D., Ellerton, N.F. and Robinson, H.A., Progr. Biophys. Mol. Biol. 41, 143–248 (1983).CrossRefGoogle Scholar
  4. 4.
    Van Schaick, E.J.M., Schutter, W.G., Gaykema, W.P.J., Schepman, A.M.H. and Hol, W.G.J.,J. Mol. Biol. 158 457–485 (1982).Google Scholar
  5. 5.
    Gaykema, W.P.J., Van Schaick, E.J.M., Schutter, W.G. and Hol, W.G.J., Chemica Scripta 21, 19–23 (1983).Google Scholar
  6. 6.
    Gaykema, W.P.J., Hol, W.G.J., Vereijken, J.M., Soeter, N.M., Bak, H.J. and Beintema, J.J., Nature 309, 23–29 (1984).CrossRefGoogle Scholar
  7. 7.
    Gaykema, W.P.J., Volbeda, A. and Hol, W.G.J., submitted for publication.Google Scholar
  8. 8.
    Linzen, B., Soeter, N.M., Riggs, A.F., Schneider, H.-J., Schartau, W., Moore, M.D., Yokota, E., Behrens, P.Q., Nakashima, H., Takagi, T., Nemoto, T., Vereijken, J.M., Bak, H.J., Beintema, J.J., Volbeda, A., Gaykema, W.P.J. and Bol, W.G.J., Science 229 519–524 (1985).Google Scholar
  9. 9.
    Kuiper, H.A., Gaastra, W„ Beintema, J.J., Van Bruggen, E.F.J., Schepman, A.M.H. and Drenth, J., J. Mol. Biol. 99, 619–629 (1975).CrossRefGoogle Scholar
  10. 10.
    Hol, W.G.J., Volbeda, A. and Gaykema, W.P.J., Proceedings of the Daresbury Meeting on Molecular Replacement (1985) in press.Google Scholar
  11. 11.
    Lesk, A.M. and Hardman, K.D., Science 216, 539–540 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    Westhof, E., Altschuh, D., Moras, D., Bloomer, A.C., Mondragon, A., Klug, A. and Van Regenmortel, M.H.V., Nature 311 123–126 (1984).Google Scholar
  13. 13.
    Taìner, J.A., Getzoff, E.D., Alexander, H.A., Houghton, R.A., Olson, A.J., Lerner, R.A. and Hendrickson, W.A., Nature 312 127133 (1984).Google Scholar
  14. 14.
    Woolery, G.L., Powers, L., Winkler, M., Solomon, E.I. and Spiro, T.G., J. Am. Chem. Soc. 106, 86–92 (1984).CrossRefGoogle Scholar
  15. 15.
    Brown, J.M., Powers, L., Kincaid, B., Larrabee, J.A. and Spiro, T.G., J. Am. Chem. Soc. 102, 4210–4216 (1980).CrossRefGoogle Scholar
  16. 16.
    Suzuki, S., Kino, J., Kimura, M., Mori, W. and Nakahara, A., Inorg. Chim. Acta 66, 41–47 (1982).CrossRefGoogle Scholar
  17. 17.
    Suzuki, S., Kino, J. and Nakahara, A., Bull. Chem. Soc. Jpn. 55, 212–217 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Anne Volbeda
    • 1
  • Wim G. J. Hol
    • 1
  1. 1.Laboratory of Chemical PhysicsGroningenThe Netherlands

Personalised recommendations