Post-Fusion Events

  • Trevor G. Cooper


Fusion of spermatozoa with eggs not only permits provision of the genetic material from the male but also activates various processes in the egg that are essential for zygote development, e.g. initiating the second meiotic division, extruding the second polar body and synthesising DNA, as well as those that prevent aneuploidy, e.g. release cortical granule contents facilitating vitelline or zona blocks to polyspermy.


Human Spermatozoon Disulphide Bond Sperm Head Sperm Nucleus Sperm Chromatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedford JM and Calvin HI (1974) The occurrence and possible significance of -S-S- cross links in sperm heads, with particular reference to Eutherian mammals. J exp Zool 188: 137–156PubMedCrossRefGoogle Scholar
  2. Bedford JM, Cooper GW and Calvin HI (1972) Post-meiotic changes in the nucleus and membranes of mammalian spermatozoa. In: The Genetics of the Spermatozoon. Eds RA Beatty and S Glucksohn-Waelsh, Bogtrykkeriet Forum, Copenhagen, pp 69–89Google Scholar
  3. Bedford JM, Calvin H and Cooper GW (1973) The maturation of spermatozoa in the human epididymis. J Reprod Fert Suppl 18: 199–213Google Scholar
  4. Beil RE and Graves GN (1977) Nuclear decondensation of mammalian spermatozoa changes during maturation and in vitro storage. J exp Zool 202: 235–240PubMedCrossRefGoogle Scholar
  5. Berry RE and Mayer DT (1960) The histone-like basic protein of bovine spermatozoa. Exp Cell Res 20: 116–126PubMedCrossRefGoogle Scholar
  6. Bouters R, Esnault C, Ortavant R and Salisbury GW (1967a) Comparison of DNA revealed by Feulgen and by ultra-violet light in rabbit spermatozoa after storage in the male efferent ducts. Nature (Lond) 213: 181–182CrossRefGoogle Scholar
  7. Bouters R, Esnault C, Salisbury GW and Ortavant R (1967b) Discrepancies in analyses of deoxyribonucleic acid in rabbit spermatozoa, involving Feulgen staining (Feulgen-DNA) and ultraviolet light absorption (UV-DNA) measurements. J Reprod Fert 14: 355–363CrossRefGoogle Scholar
  8. Brackett BG, Hall JL and Oh YK (1978) In-vitro fertilizing ability of testicular, epididymal, and ejaculated rabbit spermatozoa. Fert Steril 29: 571–582Google Scholar
  9. Bustos-Obregon E (1980) Cytochemical characterization of sperm nuclei during epididymal maturation in mammals. Arch Biol Med Exp 13: 335–341Google Scholar
  10. Calvin H and Bedford JM (1971) Formation of disulphide binds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fert Suppl 13: 65–75Google Scholar
  11. Calvin HI and Bedford JM (1974) Stimulation of actinomycin D-binding to Eutherian sperm chromatin by reduction of disulphide bonds. J Reprod Fert 36: 225–229CrossRefGoogle Scholar
  12. Calvin HI, Yu CC and Bedford JM (1973) Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulphvdrvl content of structural elements in rat spermatozoa. Exp Cell Res 81: 333–341PubMedCrossRefGoogle Scholar
  13. Carranco A, Reyes R, Magdaleno VM, Huacuja L, Hernandez O, Rosado A, Merchant H and Delgado NM (1983) Heparin-induced decondensation of mammalian epididymal spermatozoa. Archs Androl 10: 213–218CrossRefGoogle Scholar
  14. Chang TSK and Morton B (1975) Epididymal sulfhydryl oxidase: a sperm-protective enzyme from the male reproductive tract. Biochem Biophys Res Commun 66: 309–315PubMedCrossRefGoogle Scholar
  15. Chang TSK and Morton B (1978) Distribution of sulfhydryl oxidase activity in the rat and hamster male reproductive tract. Biol Reprod 18: 745–748PubMedCrossRefGoogle Scholar
  16. Chaudhury JP and Yanagimachi R (1984) An improved method to visualize human sperm chromosomes using zona-free hamster eggs. Gamete Res 10: 233–239CrossRefGoogle Scholar
  17. Clarke JR, Esnault C and Nicolle JC (1980) Feulgen-DNA changes in the germ cells of the male vole (Microtus agrestis) during their development. Reprod Nutr Develop 20: 183–190CrossRefGoogle Scholar
  18. Coelingh JP, Monfoort CH, Rozijn TH, Gevers Leuven JA, Schiphof R, Steyn-Parve EP, Braunitzer G, Schrank B and Ruhfus A (1972) The complete amino acid sequence of the basic nuclear protein of bull spermatozoa. Biochem Biophys Acta 285: 1–14PubMedGoogle Scholar
  19. Croce CM, Gledhill BL, Garbara B, Sawicki W and Koprowski H (1972) Lysolecithin-induced fusion of rabbit spermatozoa with hamster somatic cells. Adv Biosci 8: 187–200Google Scholar
  20. Darzynkiewicz Z, Gledhill BL and Ringertz NR (1969) Changes in deoxyribonucleoprotein during spermiogenesis in the bull 3H-actinomycin binding capacity. Exp Cell Res 58: 435–438PubMedCrossRefGoogle Scholar
  21. Esnault C (1973) Reactivation of the Feulgen reaction of ram spermatozoa by dithiothreitol. J Reprod Fert 32: 153–157CrossRefGoogle Scholar
  22. Esnault C and Nicolle JC (1976) Evolution de l’ADN et des proteins nucleaires basiques au cours de la maturation des cellules germinates du bélier. Etude microspoctrophotometrique. Ann Histochem 21: 189–197Google Scholar
  23. Gall WE and Ohsumi Y (1976) Decondensation of sperm nuclei in vitro. Exp Cell Res 102: 349–358PubMedCrossRefGoogle Scholar
  24. Gledhill BL (1966) Studies on the DNA content, dry mass and optical area of bull spermatozoal heads during epididymal maturation. Acta Vet Scand 7: 131–142PubMedGoogle Scholar
  25. Gledhill BL (1972) Further studies on the nuclear chromatin of morphologically abnormal bull spermatozoa. J Reprod Fert 29: 431–472CrossRefGoogle Scholar
  26. Gledhill BL and Amann RP (1973) Stability of spermatozoal deoxyribonucleoprotein during passage through the bovine epididymis. J Reprod Fert 33: 531–534CrossRefGoogle Scholar
  27. Gledhill BL, Gledhill MP, Rigler R and Ringertz NR (1966a) Changes in deoxyribonucleoprotein during spermatogenesis in the bull. Exp Cell Res 41: 652–665PubMedCrossRefGoogle Scholar
  28. Gledhill BL, Sawicki W, Croce CM and Koprowski H (1972) DNA synthesis in rabbit spermatozoa after treatment with lysolecithin and fusion with somatic cells. Exp Cell Res 73: 33–40PubMedCrossRefGoogle Scholar
  29. Gwatkin RBL (1977) Fertilization mechanisms in man and mammals. Plenum Press, New YorkGoogle Scholar
  30. Heston WDW, Zirkin BR and Coffey DS (1975) Release of chromatin template restriction in rabbit spermatozoa. Biochem Biophys Res Commun 64: 162–168PubMedCrossRefGoogle Scholar
  31. Higgins PJ, Borenfreund H and Bendich A (1975) Appearance of foetal antigens in somatic cells after interaction with heterologous sperm. Nature (Lond) 257: 488–489CrossRefGoogle Scholar
  32. Huang HFS and Nieschlag E (1984) Alteration of free sulphydryl content of rat sperm heads by suppression of intratesticular testosterone. J Reprod Fert 70: 31–38CrossRefGoogle Scholar
  33. Imai H, Niwa K and Iritani A (1977) Penetration in vitro of zona-free hamster eggs by ejaculated boar spermatozoa. J Reprod Fert 51: 495–497CrossRefGoogle Scholar
  34. Imai H, Niwa K and Iritani A (1980) Ultrastructural observations of boar spermatozoa penetrating zona-free hamster eggs. Biol Reprod 23: 481–486PubMedCrossRefGoogle Scholar
  35. Johnson RT, Rao PN and Hughes HD (1970) Mammalian cell fusion. III. A HeLa cell inducer of premature chromosome condensation active in cells from a variety of animal species. J Cell Physiol 76: 151–158PubMedCrossRefGoogle Scholar
  36. Kopecny V and Pavlok A (1975) Autoradiographic study of mouse spermatozoan arginine-rich nuclear protein in fertilization. J exp Zool 191: 85–95PubMedCrossRefGoogle Scholar
  37. Koprowski H and Croce CM (1973) Fusion of somatic and gametic cells with lysolccithin. In: Methods in Cell Biology. Ed DM Prestcott, Acad Press, London, Volume VII, pp 251–260Google Scholar
  38. Krzanowska H (1982) Toluidcnc blue staining reveals changes in chromatin stabilization of mouse spermatozoa during epididymal maturation and penetration of ova. J Reprod Fert 64: 97–101CrossRefGoogle Scholar
  39. Mahadevan MM and Trounson AO (1985) Removal of the cumulus oophorus from the human oocyte for in vitro fertilization. Ferl Steril 43: 263–267Google Scholar
  40. Mahi CA and Yanagimachi R (1975) Induction of nuclear decondensation of mammalian spermatozoa in vitro. J Reprod Fert 44: 293–296CrossRefGoogle Scholar
  41. Markert CL (1983) Fertilization of mammalian eggs by sperm injection. J Exp Zool 228: 195–201PubMedCrossRefGoogle Scholar
  42. Martin RH (1984) Comparison of chromosomal abnormalities in hamster egg and human sperm pronuclei. Biol Reprod 31: 819–825PubMedCrossRefGoogle Scholar
  43. Martin RH, Lin CC, Balkan W and Bums K (1982) Direct chromosomal analysis of human spermatozoa: preliminary results from 18 normal men. Am J Human Genet 34: 459–468Google Scholar
  44. Martin RH, Balkan W, Burns K, Rademaker AW, Lin CC and Rudd NL (1983) The chromosome constitution of 1000 human spermatozoa. Human Genetics 63: 305–309PubMedCrossRefGoogle Scholar
  45. Marushige Y and Marushige K (1974) Properties of chromatin isolated from bull spermatozoa. Biochem Biophys Acta 340: 498–508PubMedGoogle Scholar
  46. Marushige Y and Marushige K (1975) Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem 250: 39–45PubMedGoogle Scholar
  47. Meistrich ML, Hughes TJ and Bruce WRT (1975) Alteration of epididymal sperm transaport and maturation in mice by oestrogen and testosterone. Nature (Lond) 258: 145–147CrossRefGoogle Scholar
  48. Meistrich ML, Reid BO and Barcellona WJ (1976) Changes in sperm nuclei during spermiogenesis and epididymal maturation. Exp Cell Res 99: 72–78sPubMedCrossRefGoogle Scholar
  49. Miller MA and Masui Y (1982) Changes in the stainability and sulphydryl level in the sperm nucleus during sperm-oocyte interaction in mice. Gamete Res 5: 167–179CrossRefGoogle Scholar
  50. Nicolle JC, Fournier-Delpech S and Courot M (1985) Influence of uterine secretions on the chromatin of ram spermatozoa at different stages of maturation: cytofluorimetric study of Feulgen-DNA after in vitro incubation. Gamete Res 11: 321–328CrossRefGoogle Scholar
  51. Ohsumi K, Katagiri C and Yanangimachi R (1986) Development of pronuclei from human spermatozoa injected microsurgically into frog (Xenopus) eggs. J exp Zool 237: 319–325PubMedCrossRefGoogle Scholar
  52. Orgebin-Crist MC (1967) Maturation of spermatozoa in the rabbit epididymis: fertilizing ability and embryonic mortality in docs inseminated with epididymal spermatozoa. Ann biol Anim Biochem Biophys 7: 373–389CrossRefGoogle Scholar
  53. Orgebin-Crist MC (1969) Studies on the function of the epididymis. Biol Reprod Suppl 1: 155–175CrossRefGoogle Scholar
  54. Pellicciari C, Hosokawa Y, Fukuda M and Manfredu Romani MG (1983) Cytofluorimetric study of nuclear sulphydryl and disulphide groups during sperm maturation in the mouse. J Reprod Fert 68: 371–376CrossRefGoogle Scholar
  55. Perreault SD, Wolff RA and Zirkin BR (1984) The role of disulfide bond reduction during mammalian nuclear decondensation in vivo. Develop Biol 101: 160–167PubMedCrossRefGoogle Scholar
  56. Porcelli F, Cozzi B and Ferrandi B (1982) Cytochemical behaviour of rabbit spermatozoa chromatin in male and female genital tracts. Bas Appl Histochem 26: 289–302Google Scholar
  57. Redi CA, Garagna S, Merani MS, Capanna E, Bianchi NO and Romanini M (1982) Microdensitometric evaluation of the DNA content, as ploidy parameters of spermatozoa in the polymorphic chromosomal system of akodon molinae cabrera (Rodentia, Cricetidao). Gamete Res 5: 345–354CrossRefGoogle Scholar
  58. Ringertz NR, Gledhill BL and Darzynkiewicz Z (1970) Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Sensitivity to heat denaturation. Exp Cell Res 62: 204–218PubMedCrossRefGoogle Scholar
  59. Rudak E, Jacons PA and Yanagimachi R (1978) Direct analysis of the chromosome constitution on human spermatozoa. Nature (Lond) 274: 911–913CrossRefGoogle Scholar
  60. Sattayasai N and Panyim S (1982) Nature of the proteins which form disulfide bonds during the maturation of rat spermatozoa. Int J Androl 5: 337–344PubMedCrossRefGoogle Scholar
  61. Sawicki W and Koprowski H (1971) Fusion of rabbit spermatozoa with somatic cells cultivated in vitro. Exp Cell Res 66: 145–151PubMedCrossRefGoogle Scholar
  62. Steinhardt RA, Epel D, Carroll EJ and Yanagimachi R (1974) Is calcium ionophore universal activator for unfertilized eggs? Nature (Lond) 252: 41–43CrossRefGoogle Scholar
  63. Thadani YM (1979) Injection of sperm heads into immature rat oocytes. J exp Zool 210: 161–168PubMedCrossRefGoogle Scholar
  64. Tobita T, Tanaka H, Tanaka K, Tanaka T, Kojim S and Nakano M (1984) Characteristics of cysteinyl sulfhydryls and nuclease sensitiviy of boar sperm nuclei during epididymal maturation. Biochem Int 9: 161–168Google Scholar
  65. Tung KSK, Yanagimachi H and Yanagimachi R (1982) Sperm autoantigens and fertilization. III. Ultrastructural localization of guinea pig autoantigens. Anat Rec 202: 241–253PubMedCrossRefGoogle Scholar
  66. Uehora T and Yanagimachi R (1976) Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod 15: 467–470CrossRefGoogle Scholar
  67. Uehora T and Yanagimachi R (1977) Behaviour of nuclei of testicular, caput and cauda epididymal spermatozoa injected into hamster eggs. Biol Reprod 16: 315–321CrossRefGoogle Scholar
  68. Usui N and Yanagimachi R (1976) Behaviour of hamster sperm nuclei incorporated into eggs at various stages of maturation, fertilization, and early development. The appearance and disappearance of factors involved in sperm chromatin decondensation in egg cytoplasm. J Ultrastruct Res 57: 276–288PubMedCrossRefGoogle Scholar
  69. van Meel FCM and Pearson PL (1979) Do human spermatozoa reactivate in the cytoplasm of somatic cells? J Cell Sci 35: 105–122PubMedGoogle Scholar
  70. Witkin SS, Korngold GC and Bendich A (1975) Ribonuclease-sensitive DNA-synthesising complex in human sperm heads and seminal fluid. Proc Natn Acad Sci US 72: 3295–3299CrossRefGoogle Scholar
  71. Yanagimachi R (1981) Mechanisms of Fertilization in Mammals. In: Fertilization and Embryonic Development In Vitro. Eds L Mastroianni and JD Biggers, Plenum Press, London, pp 81–182Google Scholar
  72. Yanagimachi R (1982) Requirement of extracellular calcium ions for various stages of fertilization and fertilization-related phenomena in the hamster. Gamete Res 5: 323–344CrossRefGoogle Scholar
  73. Yanagimachi R (1984) Zona-free hamster eggs: their use in assessing fertilizing capacity and examining chromosomes of human spermatozoa. Gamete Res 10: 187–232CrossRefGoogle Scholar
  74. Yanagimachi R and Usui N (1972) The appearance and disappearance of factors involved in sperm chromatin decondensation in the hamster egg. J Cell Biol 55: 293aGoogle Scholar
  75. Zelenin AV, Shapiro IM, Kolesnkov VA and Senin VM (1974) Physico-chemical properties of chromatin of mouse sperm nuclei in heterkaryons with Chinese hamster cells. Cell Diff 3: 95–101CrossRefGoogle Scholar
  76. Zirkin BR and Chang TSK (1977) Involvement of endogenous proteolytic activity in thiol-induced release of DNA template restrictions in rabbit sperm nuclei. Biol Reprod 17: 131–137PubMedCrossRefGoogle Scholar
  77. Zirkin BR, Boisin A, Heston WDW and Coffey DS (1976) Release of DNA template restrictions in rabbit spermatozoa and rat liver nuclei. J exp Zool 197: 283–288PubMedCrossRefGoogle Scholar
  78. Zirkin BR, Soucek DA, Chang TSK and Perreault S (1985) In vitro and in vivo studies of mammalian sperm nuclear decondensation. Gamete Res 11: 349–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Trevor G. Cooper
    • 1
  1. 1.Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.Klinische Forschungsgruppe für Reproduktionsmedizin an der Frauenklinik der Universität MünsterMünsterGermany

Personalised recommendations