Skip to main content

The Pituitary Portal System

  • Conference paper

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 7))

Abstract

By 1970, the picture seemed to be complete. Wislocki and King (1936) had first accurately described the portal system in 1936 after injecting monkeys, cats, and rabbits with India ink. They reported that superior hypophyseal arteries supplied the capillary bed of the median eminence. Its capillaries coalesced into long portal “venules” which passed between the median eminence and the pars distalis, where they then arborized into a secondary capillary bed. These capillaries in turn coalesced into lateral and inferior hypophyseal veins, which passed to the adjacent cavernous sinus. E. Scharrer and B. Scharrer (1940, 1944) had proposed the concept of neurosecretion, and ample evidence was forthcoming to support it as the means by which the brain controls posterior pituitary (neural lobe) function (Verney 1947; Vigneaud et al. 1953; VanDyke 1955; Palay 1955, 1960; Sloper et al. 1960; Bargmann 1966).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajika K (1979) Simultaneous localization of LHRH and catecholamines in rat hypothalamus. J Anat 128:331–347

    PubMed  CAS  Google Scholar 

  • Ajika K (1980) Relationship between catecholaminergic neurons and hypothalamic hormone-containing neurons in the hypothalamus. In: Martini L, Ganong WF (eds) Frontiers of neuroendocrinology, vol 6. Raven, New York, pp 1–32

    Google Scholar 

  • Ajika K, Hökfelt T (1973) Ultrastructural identification of catecholamine neurones in the hypothalamic periventricular-arcuate nucleus-median eminence complex with special references to quantitative aspects. Brain Res 57:97–117

    PubMed  CAS  Google Scholar 

  • Akmayev IG (1969) Morphological aspects of the hypothalamic-hypophyseal system. I. Fibers terminating in the neurohypophysis of mammals. Z Zellforsch 96:609–624

    PubMed  CAS  Google Scholar 

  • Akmayev IG (1971) Morphological aspects of the hypothalamic hypophyseal system. II. Functional morphology of pituitary microcirculation. Z Zellforsch 116:178–194

    PubMed  CAS  Google Scholar 

  • Ambach G, Palkovits M, Szentagothai J (1976) Blood supply of the rat hypothalamus. IV. Retrochiasmatic area, median eminence, arcuate nucleus. Acta Morphol Hung 24:93–119

    CAS  Google Scholar 

  • Antakly T, Sasaki A, Liotta AS, Palkovits M, Kreiger DT (1985) Induced expression of the glucocorticoid receptor in the rat intermediate pituitary lobe. Science 229:277–279

    PubMed  CAS  Google Scholar 

  • Anthony ELP, King JC, Stopa EG (1984) Immunocytochemical localization of LHRH in the median eminence, infundibular stalk and neurohypophysis. Evidence for multiple sites of releasing hormone secretion in humans and other mammals. Cell Tissue Res 236:5–14

    PubMed  CAS  Google Scholar 

  • Antunes JL, Zimmerman EA (1978) The hypothalamic magnocellular system of the rhesus monkey: an immunocytochemical study. J Comp Neurol 181:539–565

    PubMed  CAS  Google Scholar 

  • Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: an immuno-histochemical study. Brain Res 137:1–10

    PubMed  CAS  Google Scholar 

  • Atwell WJ (1926) The development of the hypophysis cerebri in man, with special reference to the pars tuberalis. Am J Anat 37:159–193

    Google Scholar 

  • Baez S (1977) Skeletal muscle and gastrointestinal microvascular morphology. In: Kaley G, Altura BM (eds) Microcirculation, vol 1. Univ Park Press, Baltimore, pp 69–94

    Google Scholar 

  • Baker BL (1974) Functional cytology of the hypophyseal pars distalis and pars intermedia. In: Knobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control, part 1. Williams and Wilkins, Baltimore, pp 45–80 (Handbook of Physiology, vol 4)

    Google Scholar 

  • Baker BL (1977) Cellular composition of the human pituitary pars tuberalis as revealed by immunocytochemistry. Cell Tissue Res 182:151–163

    PubMed  CAS  Google Scholar 

  • Baker BL, Drummond ST (1972) The cellular origins of corticotropin and melanotropin as revealed by immunochemical staining. Am J Anat 134:395–409

    PubMed  CAS  Google Scholar 

  • Bargmann W (1966) Neurosecretion. Int Rev Cytol 19:183–201

    PubMed  CAS  Google Scholar 

  • Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am Sci 39:255–259

    Google Scholar 

  • Barrnett RJ, Greep RO (1951) The direction of flow in the blood vessels of the infundibular stalk. Science 113:185

    PubMed  CAS  Google Scholar 

  • Baumgarten HG, Björklund A, Holstein AF, Nobin A (1972) Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary. Z Zellforsch 126:483–517

    PubMed  CAS  Google Scholar 

  • Begeot M, Dupouy JP, Dubois MP, Dubois PM (1981) Immunocytological determination of gonadotropic and thyrotropic cells in fetal rat anterior pituitary during normal development and under experimental conditions. Neuroendocrinology 32:285–294

    PubMed  CAS  Google Scholar 

  • Ben-Jonathan N, Oliver C, Weiner HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100:452–458

    PubMed  CAS  Google Scholar 

  • Bergland RM, Page RB (1978) Can the pituitary secrete directly to the brain? (Affirmative anatomical evidence). Endocrinology 102:1325–1338

    PubMed  CAS  Google Scholar 

  • Bergland RM, Torack RM (1969) An electron microscopic study of the human infundibulum. Z Zellforsch 99:1–12

    PubMed  CAS  Google Scholar 

  • Bern HA, Knowles FGW (1966) Neurosecretion. In: Martini L, Ganong WF (eds) Neuroendocrinology. Academic, New York, pp 139–186

    Google Scholar 

  • Björklund A (1968) Monoamine-containing fibers in the pituitary neuro-intermediate lobe of the pig and rat. Z Zellforsch 89:573–589

    PubMed  Google Scholar 

  • Björklund A, Falck B, Hromek F, Owman C, West K (1970) Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res 17:1–23

    PubMed  Google Scholar 

  • Björklund A, Moore RY, Nobin A, Stenevi U (1973) The organization of the tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 51:171–191

    PubMed  Google Scholar 

  • Bloch B, Bugnon C, Fellman D, Lenys D (1978) Immunocytochemical evidence that the same neurons in the human infundibular nucleus are stained with anti-endorphins and antisera of other related peptides. Neurosci Lett 10:147–152

    PubMed  CAS  Google Scholar 

  • Bloom FE (1970) The fine structural localization of biogenic amines in nervous tissue. Int Rev Neurobiol 13:27–66

    CAS  Google Scholar 

  • Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV (1969) The identity of chemical and hormonal properties of the thyrotropin-releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 37:705–710

    PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    PubMed  CAS  Google Scholar 

  • Broadwell RD, Cataldo AM, Bahn BJ (1984) Further studies of the secretory process in hypothalamo-neurohypophyseal neurons: an analysis using immunocytochemistry, wheat germ agglutinin-peroxidase and native peroxidase. J Comp Neurol 228:155–167

    PubMed  CAS  Google Scholar 

  • Buckberg GD, Luck JC, Payne DB, Hoffman JIE, Archie JP, Fisler DE (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604

    PubMed  CAS  Google Scholar 

  • Bugnon C, Bloch B, Lenys D, Fellmann D (1979a) Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and β-LPH. Cell Tissue Res 199:177–196

    PubMed  CAS  Google Scholar 

  • Bugnon C, Bloch B, Lenys D, Gouget A, Fellmann D (1979 b) Comparative study of the neuronal populations containing β-endorphin, corticotropin and dopamine in the arcuate nucleus of the rat hypothalamus. Neursci Lett 14:43–48

    CAS  Google Scholar 

  • Bugnon C, Fellmann D, Gouget A, Cardot J (1982) Corticoliberin in rat brain: immunocytochemical identification and localization of a novel neuroglandular system. Neurosci Lett 30:25–30

    PubMed  CAS  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R (1970) Characterization of ovine hypothalamic hypophysiotropic TSH-releasing factor. Nature (Lond) 226:321–325

    CAS  Google Scholar 

  • Burlet A, Tonon M-C, Tankosic P, Coy D, Vaudry H (1983) Comparative immunocytochemical localization of corticotropin releasing factor (CRF-41) and neurohypophyseal peptides in the brain of Brattleboro and Long-Evans rats. Neuroendocrinology 37:64–72

    PubMed  CAS  Google Scholar 

  • Cameron E, Foster CL (1972) Some light-and electron-microscopical observations on the pars tuberalis of the pituitary gland of the rabbit. J Endocrinol 54:505–511

    PubMed  CAS  Google Scholar 

  • Campbell HJ (1966) The development of the primary portal plexus in the median eminence of the rabbit. J Anat 100:381–387

    PubMed  CAS  Google Scholar 

  • Carson KA, Nemcroff CB, Rone MS, Youngblood WW, Prange AJ, Hanber JS, Kizer JS (1977) Biochemical and histochemical evidence for the existence of a tubero-infundibular cholinergic pathway in the rat. Brain Res 129:169–173

    PubMed  CAS  Google Scholar 

  • Celis ME (1977) Hypothalamic peptides involved in the control of MSH secretion: identity, biosynthesis and regulation of their release. Front Horm Res 4:69–79

    PubMed  CAS  Google Scholar 

  • Chatelain A, Dubois MP, Dupouy JP (1976) Hypothalamus and cytodifferentiation of the foetal pituitary gland. Cell Tissue Res 169:335–344

    PubMed  CAS  Google Scholar 

  • Daniel PM, Prichard MML (1975) Studies of the hypothalamus and the pituitary gland. With special reference to the effects of transection of the pituitary stalk. Acta Endocrinol (Copenh) 80 [Suppl 201]:1–216

    Google Scholar 

  • Dempsey EW, Wislocki GB (1955) An electron microscopic study of the blood brain barrier in the rat employing silver nitrate as a vital stain. J Biophys Biochem Cytol 1:245–256

    PubMed  CAS  Google Scholar 

  • Dorsa DM, deKloet ER, Mezey E, deWied D (1979) Pituitary-brain transport of neurotensin: functional significance of retrograde transport. Endocrinology 104:1663–1666

    PubMed  CAS  Google Scholar 

  • Duffy PE, Menefee M (1965) Electron microscopic observations of neurosecretory granules, nerves and glial fibers and blood vessels of the rabbit. Am J Anat 117:251–286

    PubMed  CAS  Google Scholar 

  • Duvernoy H (1969) Considérations sur la vascularisation de l’hypophyse. Acta Neurol Belg 69:469–481

    CAS  Google Scholar 

  • Duvernoy H (1972) The vascular architecture of the median eminence. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel, pp 79–108

    Google Scholar 

  • Duvernoy H, Koritke JG (1964) Contribution a l’étude de l’angioarchitectonie des organes circumventriculaires. Arch Biol 75:849–904

    Google Scholar 

  • Duvernoy H, Koritke JG (1968) Les vaisseaux sous-épendymaires du recessus hypophysare. J Hirnforsch 10:227–245

    PubMed  CAS  Google Scholar 

  • Duvernoy H, Koritke JG, Monnier G (1971) Sur la vascularisation du tuber postérieur chez l’homme et sur les relations vasculaires tubérohypophysaires. J Neuro Visc Relat 32:112–142

    CAS  Google Scholar 

  • Dyball REJ (1971) Oxytocin and ADH secretion in relation to electrical activity in anti-dromically identified supraoptic and paraventricular units. J Physiol (Lond) 214:245–256

    CAS  Google Scholar 

  • Eklof B, Lassen NA, Nilsson L, Norberg K, Siesjo BK, Tarlof P (1974) Regional cerebral blood flow in the rat measured by the tissue sampling technique: a critical evaluation using four indicators C14 antipyrine, C14-ethanol, H3-water and xenon133. Acta Physiol Scand 91:1–10

    PubMed  CAS  Google Scholar 

  • Enemar A (1961) The structure and development of the hypophyseal portal system in the laboratory mouse, with particular regard on the primary plexus. Arch Zool 13:203–252

    Google Scholar 

  • Eurenius L, Jarskar R (1971) Electron microscope studies on the development of the external zone of the mouse median eminence. Z Zellforsch 122:488–502

    PubMed  CAS  Google Scholar 

  • Fisher AWF, Price PG, Burford GD, Lederis K (1979) A 3-dimensional reconstruction of the hypothalamo-neurohypophysial system of the rat. Cell Tissue Res 204:343–354

    PubMed  CAS  Google Scholar 

  • Flament-Durand J, Couck A-M, Dustin P (1975) Studies on the transport of secretory granules in the magnocellular hypothalamic neurons of the rat. Cell Tissue Res 164:1–9

    PubMed  CAS  Google Scholar 

  • Fuxe K (1963) Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals. Acta Physiol Scand 58:383–384

    PubMed  CAS  Google Scholar 

  • Fuxe K (1964) Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Z Zellforsch 61:710–724

    PubMed  CAS  Google Scholar 

  • Fuxe K, Hökfelt T (1969) Catecholamines in the hypothalamus and the pituitary gland. In: Martini L, Ganong WF (eds) Frontiers of neuroendocrinology. New York Univ Press, New York London Toronto, pp 47–96

    Google Scholar 

  • Gainer H, Same Y, Brownstein MJ (1977) Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. J Cell Biol 73:366–381

    PubMed  CAS  Google Scholar 

  • Gash D, Ahmad N, Schechter J (1977) Cytodifferentiation of pituitary primordia transplanted to the kidney capsule of adult hosts. Anat Rec 189:149–160

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985) Hypothalamic epinephrine is released into hypophyseal portal blood during stress. Brain Res 335:360–364

    PubMed  CAS  Google Scholar 

  • Gibbs DM, Neill JD (1978) Dopamine levels in hypophyseal stalk blood in the rat are sufficient to inhibit prolactin secretion in vivo. Endocrinology 102:1895–1900

    PubMed  CAS  Google Scholar 

  • Glydon RJ (1957) The development of the blood supply of the pituitary in the albino rat, with special reference to portal vessels. J Anat 91:237–244

    PubMed  CAS  Google Scholar 

  • Goldman H (1961) Endocrine gland blood flow in the unanesthetized, unrestrained rat. J Appl Physiol 16:762–764

    PubMed  CAS  Google Scholar 

  • Goldman H, Saperstein LA (1958) Determination of blood flow to the rat pituitary gland. Am J Physiol 194:433–435

    PubMed  CAS  Google Scholar 

  • Green HT (1957) The venous drainage of the human hypophysis cerebri. Am J Anat 100:435–469

    PubMed  CAS  Google Scholar 

  • Green JD (1947) Vessels and nerves of the amphibian hypophyses. A study of the living circulation and of the histology of the hypophyseal vessels and nerves. Anat Res 99:21–54

    CAS  Google Scholar 

  • Green JD (1948) The histology of the hypophyseal stalk and median eminence in man with special reference to blood vessels, nerve fibers and a peculiar neurovascular zone in this region. Anat Rec 100:273–295

    PubMed  CAS  Google Scholar 

  • Green JD (1951) The comparative anatomy of the hypophysis with special reference to its blood supply and innervation. Am J Anat 88:225–311

    PubMed  CAS  Google Scholar 

  • Green JD (1966) The comparative anatomy of the portal vascular system and of the innervation of the hypophysis. In: Harris GW, Donovan BT (eds) The pituitary gland. Butterworths, London, pp 126–146

    Google Scholar 

  • Green JD, Harris GW (1947) The neurovascular link between the neurohypophysis and the adenohypophysis. J Endocrinol 5:136–146

    PubMed  CAS  Google Scholar 

  • Green JD, Harris GW (1949) Observation of the hypophysio-portal vessels of the living rat. J Physiol (Lond) 108:359–361

    Google Scholar 

  • Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982) Oxytocin vasopressin-like immunoreactivity is present in the nervous system of hydra. Neuroscience 7:3191–3199

    PubMed  CAS  Google Scholar 

  • Gross DS, Baker BL (1977) Immunohistochemical localization of gonadotropin-releasing hormone (GnRH) in fetal and early postnatal mouse brain. Am J Anat 148:195–215

    PubMed  CAS  Google Scholar 

  • Gross DS, Baker BL (1979) Development correlation between hypothalamic gonadotropin-releasing hormone and hypophyseal luteinizing hormone. Am J Anat 154:1–10

    PubMed  CAS  Google Scholar 

  • Gross DS, Page RB (1979) Luteinizing hormone and follicle stimulating hormone production in the pars tuberalis of the hypophysectomized rats. Am J Anat 156:285–291

    PubMed  CAS  Google Scholar 

  • Gross PM, Blasberg RG, Fenstermacher JD, Patlak CS (1985) Rapid amino acid uptake in rat pituitary neural lobe during functional stimulation by chronic dehydration. J Cereb Blood Flow Metab 5:151–155

    PubMed  CAS  Google Scholar 

  • Halasz B, Kosaras B, Lengvari I (1972) Ontogenesis of the neurovascular link between the hypothalamus and anterior pituitary in the rat. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction, median eminence structure and function. Karger, Basel, pp 27–34

    Google Scholar 

  • Hanstrom B (1953) The neurohypophysis in a series of mammals. Z Zeilforsch 39:241–259

    CAS  Google Scholar 

  • Harris GW (1947) The blood vessels of the rabbit’s pituitary gland and the significance of the pars and zona tuberalis. J Anat (Lond) 81:343–351

    CAS  Google Scholar 

  • Harris GW (1955) Neural control of the pituitary gland. Arnold, London

    Google Scholar 

  • Hatton GI, Hutton UE, Hoblitzell ER, Armstrong WE (1976) Morphological evidence for two populations of magnocellular elements in the rat paraventricular nucleus. Brain Res 108:187–193

    PubMed  CAS  Google Scholar 

  • Heistad DD, Marcus ML, Mueller S (1977) Measurement of cerebral blood flow with microspheres. Arch Neurol 34:657–659

    PubMed  CAS  Google Scholar 

  • Hemming FJ, Begeot M, Dubois MP, Dubois PM (1984) Fetal rat somatotropes in vitro: effects of insulin, Cortisol and growth hormone-releasing factor on their differentiation: a light and electron microscopic study. Endocrinology 114:2107–2113

    PubMed  CAS  Google Scholar 

  • Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labelled particles. Prog Cardiovasc Dis 20:55–79

    PubMed  CAS  Google Scholar 

  • Hoffbrand BI, Forsyth RP (1969) Validity studies of the radioactive microsphere method for the study of the distribution of cardiac output, organ blood flow and resistance in the conscious rhesus monkey. Cardiovasc Res 3:426–432

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Eide R, Fuxe K, Johansson O, Ljungdahl A, Goldstein M, Luft R, Efendic S, Nilsson G, Terenius L, Ganten D, Jeffcoate SL, Rehfeld J, Said S, Perez de la Mora, Possani L, Tapia R, Teran L, Palacios R (1978 a) Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York pp 69–135

    Google Scholar 

  • Hökfelt T, Ljungdahl A, Steinbusch H, Verhofstad A, Nilsson G, Brodin E, Pernow B, Goldstein M (1978 b) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience 3:517–538

    PubMed  Google Scholar 

  • Hökfelt T, Lundberg JM, Schultzberg M, Johansson O, Ljungdahl A, Rehfeld J (1980) Coexistence of peptides and putative transmitter in neurons. Adv Biochem Psychopharmacol 22:1–23

    PubMed  Google Scholar 

  • Houssay BA, Biasotti A, Sammartino R (1935) Modifications fonctionnelles de l’hypophyse après les lésions infundibulo-tubériennes chez le crapaud. C R Soc Biol 120:725–727

    Google Scholar 

  • Ibata Y, Watanabe K, Kinoshita H, Kubo S, Sano Y, Sin S, Hashimura E, Imagawa K (1979) The localization of LH-RH neurons in the rat hypothalamus and their pathways to the median eminence. Cell Tissue Res 198:381–395

    PubMed  CAS  Google Scholar 

  • Ishikawa H, Shiino M, Arimura A, Rennels EG (1977) Functional clones of pituitary cells derived from Rathke’s pouch epithelium of fetal rats. Endocrinology 100:1227–1230

    PubMed  CAS  Google Scholar 

  • Johansson O, Hökfelt T, Jeffcoate SL, White N, Sternberger LA (1980) Ultrastructural localization of TRH-like immunoreactivity. Exp Brain Res 38:1–10

    PubMed  CAS  Google Scholar 

  • Kadekaro M, Gross PM, Sokoloff L, Holcomb HH, Saavedra JM (1983) Elevated glucose utilization in subfornical organ and pituitary neural lobe of the Brattleboro rat. Brain Res 275:189–193

    PubMed  CAS  Google Scholar 

  • Kapitola J, Dlouha H, Krecek J, Zicha J (1977) The effect of dehydration on the neurohypophyseal blood flow in rats with hereditary diabetes insipidus. Experientia 33:1615–1616

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1982) Immunohistochemical demonstration of corticotropin-releasing factor containing nerve fibers in the median eminence of the rat and monkey. Histochemistry 76:15–19

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1983) Immunohistochemical identification of neurons containing corticotropin-releasing factor in the rat hypothalamus. Cell Tissue Res 230:239–246

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Mezey E, Skirboll L (1984) Corticotropin-releasing factor — immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci USA 81:1854–1858

    PubMed  CAS  Google Scholar 

  • Knigge KM, Scott DE (1970) Structure and function of the median eminence. Am J Anat 129:223–244

    PubMed  CAS  Google Scholar 

  • Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) (1974) Brain endocrine interaction II. The ventricular system in neuroendocrine mechanisms. Karger, Basel

    Google Scholar 

  • Kobayashi H, Matsui T (1969) Fine structure of the median eminence and its functional significance. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Oxford Univ Press, New York London Toronto, pp 3–46

    Google Scholar 

  • Kobayashi H, Oota Y, Uemura H, Hirano T (1966) Electron microscopic and pharmacologic studies on the rat median eminence. Z Zellforsch 71:387–404

    CAS  Google Scholar 

  • Kopaniky DR, Gann DS (1975) Anterior pituitary vasodilatation after hemorrhage in the dog. Endocrinology 97:630–635

    PubMed  CAS  Google Scholar 

  • Lamberts SW, deLange SA, Stefanko SZ (1982) Adrenocorticotropin-secreting pituitary adenomas originate from the anterior or the intermediate lobe in Cushing’s disease: differences in the regulation of hormone secretion. J Clin Endocrinol Metab 54:286–291

    PubMed  CAS  Google Scholar 

  • Landsmeer JMF (1951) Vessels of the rat’s hypophysis. Acta Anat 12:82–109

    PubMed  CAS  Google Scholar 

  • Lechan RM, Jackson I (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111:55–65

    PubMed  CAS  Google Scholar 

  • Leclerc R, Pelletier G (1974) Electron microscope immunohistochemical localization of vasopressin in the hypothalamus and neurohypophysis of the normal and Brattleboro rat. Am J Anat 140:583–588

    PubMed  CAS  Google Scholar 

  • Lederis K (1965) An electron microscopical study of the human neurohypophysis. Z Zellforsch 65:847–868

    PubMed  CAS  Google Scholar 

  • Lichardus B, Albrecht I, Ponec J, Linhart L (1977) Water deprivation for 24 hours increases selectively blood flow in the posterior pituitary of conscious rats. Endocrinol Exp 11:99–104

    PubMed  CAS  Google Scholar 

  • Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM (1976) Total and regional cerebral blood flow measurement with 7-, 10-, 15-, 25-, and 50-μm microspheres. J Appi Physiol 40:501–507

    CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    PubMed  CAS  Google Scholar 

  • McConnell EM (1953) The arterial supply of the human hypophysis cerebri. Anat Rec 115:175–204

    PubMed  CAS  Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1982) Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am J Anat 165:385–396

    PubMed  CAS  Google Scholar 

  • Mezey E, Palkovits M (1982) Two way transport in the hypothalamo-hypophyseal system. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 7. Raven, New York pp 1–29

    Google Scholar 

  • Mezey E, Palkovits M, deKloet ER, Verhoef J, deWied D (1978) Evidence for pituitary-brain transport of a behaviorally potent ACTH analog. Life Sci 22:831–838

    PubMed  CAS  Google Scholar 

  • Mezey E, Kiss JZ, Mueller GP, Eskay R, O’Donohue TL, Palkovits M (1985) Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotropic hormone, α-melanocyte-stimulating hormone and β-endorphin (ACTH,-MSH, β-End) in the rat hypothalamus. Brain Res 328:341–347

    PubMed  CAS  Google Scholar 

  • Moll J (1958) The effect of hypophysectomy on the pituitary vascular system of the rat. J Morphol 102:1–21

    Google Scholar 

  • Monroe BG (1967) A comparative study of the ultrastructure of the median eminence, infundibular stem and neural lobe of the hypophysis of the rat. Z Zeilforsch 76:405–432

    CAS  Google Scholar 

  • Murakami T (1976) Pliable methacrylate cast of blood vessels: use of a scanning electron microscope study of the microcirculation in the rat hypophysis. Arch Histol Jpn 38:151–168

    Google Scholar 

  • Naik DV (1973) Immunohistochemical localization of adrenocorticotropin and melanocyte-stimulating hormone in the pars intermedia of the rat hypophysis. Z Zellforsch 142:289–304

    PubMed  CAS  Google Scholar 

  • Nakai Y, Shioda S, Ochiai H, Kudo J, Hashimoto A (1983) Ultrastructural relationship between monoamine and TRH-containing axons in the rat median eminence as revealed by combined autoradiography and immunocytochemistry in the same section. Cell Tissue Res 230:1–14

    PubMed  CAS  Google Scholar 

  • Norstrom A, Hansson H-A, Sjostrand J (1971) Effects of colchicine on axonal transport and ultrastructure of the hypothalamo-neurohypophyseal system of the rat. Z Zellforsch 113:271–293

    PubMed  Google Scholar 

  • Page RB (1982) Pituitary blood flow. Am J Physiol 243:E427–E442

    PubMed  CAS  Google Scholar 

  • Page RB (1983) Directional pituitary blood flow: a microcinephotographic study. Endocrinology 112:157–165

    PubMed  CAS  Google Scholar 

  • Page RB, Bergland RM (1977) The neurohypophyseal capillary bed. Part I. Anatomy and arterial supply. Am J Anat 148:345–358

    PubMed  CAS  Google Scholar 

  • Page RB, Dovey-Hartman BJ (1984 a) Neurohemal contact in the internal zone of the rabbit median eminence. J Comp Neurol 226:274–288

    PubMed  CAS  Google Scholar 

  • Page RB, Dovey-Hartman BJ (1984 b) Resistance vessels supplying the median eminence of the rabbit, rat and cat. Anat Rec 210:647–655

    PubMed  CAS  Google Scholar 

  • Page RB, Munger BL, Bergland RM (1976) Scanning microscopy of pituitary vascular casts: the rabbit pituitary portal system revisited. Am J Anat 146:273–301

    PubMed  CAS  Google Scholar 

  • Page RB, Leure-duPree AE, Bergland RM (1978) The neurohypophyseal capillary bed. II. Specializations within median eminence. Am J Anat 153:33–66

    PubMed  CAS  Google Scholar 

  • Page RB, Funsch DJ, Brennan RW, Hernandez MJ (1981) Regional neurohypophyseal blood flow and its control in adult sheep. Am J Physiol 241:R36–R43

    PubMed  CAS  Google Scholar 

  • Palay SL (1945) Neurosecretion VII: the preoptico-hypophysial pathway in fishes. J Comp Neurol 82:129–143

    Google Scholar 

  • Palay SL (1955) An electron microscopic study of the neurohypophysis in normal, hydrated and dehydrated rats. Anat Rec 121:348

    Google Scholar 

  • Palay SL (1960) The fine structure of secretory neurons in the preoptic nucleus of the goldfish (Crassius auratus). Anat Rec 138:417–444

    PubMed  CAS  Google Scholar 

  • Palkovits M (1982) Neuropeptides in the median eminence: their sources and destinations. Peptides 3:299–303

    PubMed  CAS  Google Scholar 

  • Pearse AGE, Takor TT (1976) Neuroendocrine embryology and the APUD concept. Clin Endocrinol [Suppl] 5:229S–244S

    Google Scholar 

  • Pelletier G, Dube D (1977) Electron microscopic immunohistochemical localization of α-MSH in the rat brain. Am J Anat 150:201–204

    PubMed  CAS  Google Scholar 

  • Pelletier G, Labrie F, Arimura A, Schalley AV (1974) Electron microscopic immunohistochemical localization of growth hormone release inhibiting hormone (somatostatin) in the rat median eminence. Am J Anat 140:445–450

    PubMed  CAS  Google Scholar 

  • Perlmutter LS, Hatton GI, Tweedle CD (1984) Plasticity in the in vitro neurohypophysis: effects of osmotic change on pituicytes. Neuroscience 12:503–511

    PubMed  CAS  Google Scholar 

  • Popa G, Fielding U (1930 a) The vascular link between the pituitary and the hypothalmus. Lancet 2:238–240

    Google Scholar 

  • Popa G, Fielding U (1930 b) A portal circulation from the pituitary to the hypothalamic region. J Anat 65:88–91

    PubMed  CAS  Google Scholar 

  • Porter JC, Hines MFM, Smith KR, Repass RL, Smith AJK (1967) Quantitative evaluation of local blood flow of the adenohypophysis in rats. Endocrinology 80:583–598

    PubMed  CAS  Google Scholar 

  • Proulx-Ferland L, Labrie F, Dumont D, Cote J, Coy DH, Sveiraf J (1982) Corticotropin-releasing factor stimulates secretion of melanocyte-stimulating hormone from the rat pituitaries. Science 217:62–63

    PubMed  CAS  Google Scholar 

  • Raisman G (1973) Electron microscopic studies of the development of new neurohaemal contacts in the median eminence of the rat after hypophysectomy. Brain Res 55:245–261

    PubMed  CAS  Google Scholar 

  • Rasmussen AT (1940) Effects of hypophysectomy and hypophyseal stalk resection on the hypothalamic nuclei of animals and man. Res Pubi Assoc Res Nerv Ment Dis 20:245–269

    Google Scholar 

  • Reivich M, Sokoloff L (1976) Application of the 2-deoxy-D-glucose method to the coupling of cerebral metabolism and blood flow. Neurosci Res Prog Bull 14:474–475

    CAS  Google Scholar 

  • Richards JG, Tranzer JP (1970) The ultrastructural localisation of amine storage sites in the central nervous system with the aid of a specific marker, 5-hydroxydopamine. Brain Res 17:463–469

    PubMed  CAS  Google Scholar 

  • Rinne UK (1966) Ultrastructure of the median eminence of the rat. Z Zellforsch 74:98–122

    PubMed  CAS  Google Scholar 

  • Rioch DM, Wislocki GB, O’Leary JL (1940) A precis of preoptic, hypothalamic and hypophyseal terminology with atlas. Res Publ Assoc Res Nerv Ment Dis 20:3–30

    Google Scholar 

  • Rodriguez EM (1969 a) Ependymal specializations. I. Fine structure of the neural (internal) region of the toad median eminence, with particular reference to the connections between the ependymal cells and subependymal capillary loops. Z Zellforsch 92:153–171

    Google Scholar 

  • Rodriguez EM (1969 b) Ultrastructure of the neurohemal region of the toad median eminence. Z Zellforsch 93:182–212

    PubMed  CAS  Google Scholar 

  • Romeis B (1940) Innersekretorische Drüsen. IL Hypophyse. In: van Mollendorf W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin

    Google Scholar 

  • Roth KA, Weber E, Barchas JD (1982) Immunoreactive corticotropin releasing factor (CRF) and vasopressin are colocalized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31:1857–1860

    PubMed  CAS  Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14C]-antipyrine. Am J Physiol 234:3, H59–H66

    PubMed  CAS  Google Scholar 

  • Saperstein LA (1958) Regional blood flow by functional distribution of indicators. Am J Physiol 193:161–168

    Google Scholar 

  • Sawchenko PE, Swanson LW, Joseph SA (1982) The distribution and cells of origin of ACTH (1–39) stained varicosities in the paraventricular and supraoptic nuclei. Brain Res 232:365–374

    PubMed  CAS  Google Scholar 

  • Scharrer B, Scharrer E (1944) Neurosecretion. VI. A comparison between the intercerebralis-cardiacum-allatum system of the insects and the hypothalamo-hypophyseal system of the vertebrates. Biol Bull 87:242–251

    Google Scholar 

  • Scharrer E (1965) The final common path in neuroendocrine integration. Arch Anat Microscop Morphol Exp 54:359–370

    CAS  Google Scholar 

  • Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 20:170–194

    Google Scholar 

  • Schwab ME, Thoenen H (1983) Mechanism of uptake and retrograde axonal transport of noradrenaline in sympathetic neurons in culture: reserpine-resistant large dense-core vesicles as transport vehicles. J Cell Biol 96:1538–1547

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophyseal system of the rat. Science 205:723–725

    PubMed  CAS  Google Scholar 

  • Selmanoff M (1981) The lateral and medial median eminence: distribution of dopamine, norepinephrine, and luteinizing hormone-releasing hormone and the effect of prolactin on catecholamine turnover. Endocrinology 108:1716–1722

    PubMed  CAS  Google Scholar 

  • Sherlock DA, Field PM, Raisman G (1975) Retrograde transport of horseradish peroxidase in the magnocellular neurosecretory system of the rat. Brain Res 88:403–414

    PubMed  CAS  Google Scholar 

  • Shiino M, Ishikawa H, Rennels EG (1978) Accumulation of secretory granules in pituitary clonal cells derived from the epithelium of Rathke’s pouch. Cell Tissue Res 186:53–61

    PubMed  CAS  Google Scholar 

  • Shioda S, Nakai Y (1983) Immunocytochemical localization of TRH and autoradiographic determination of 3H-TRH binding sites in the arcuate nucleus-median eminence of the rat. Cell Tissue Res 228:475–487

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Zimmerman EA (1975) Ultrastructural immunocytochemical localization of neurophysin and vasopressin in the median eminence and posterior pituitary of the guinea pig. Cell Tissue Res 159:291–301

    PubMed  CAS  Google Scholar 

  • Sloper JC, Arnott DJ, King BC (1960) Sulphur metabolism in the pituitary and hypothalamus of the rat: a study of radioisotope-uptake after the injection of 35S dl-cysteine, methionine and sodium sulphate. J Endocrinol 20:9–23

    PubMed  CAS  Google Scholar 

  • Sobin SS, Tremer HM (1977) Three-dimensional organization of microvascular beds as related to function. In: Kaley G, Altura B (eds) Microcirculation, vol 1. Univ Park Press, Baltimore, pp 43–67

    Google Scholar 

  • Sobin SS, Tremer HM, Fung YC (1970) The morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ Res 26:397–414

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinol 31:410–417

    CAS  Google Scholar 

  • Szentagothai J, Flerko B, Mess B, Halasz B (1968) Hypothalamic control of the anterior pituitary. Akademiai, Budapest

    Google Scholar 

  • Takor TT, Pearce AGE (1975) Neuroectodermal origin of avian hypothalamo-hypo-physeal complex: the role of the ventral neural ridge. J Embryol Exp Morphol 34:311–325

    PubMed  CAS  Google Scholar 

  • Taniguchi Y (1984) Immunohistochemical evidence against the coexistence of a corticotropin-releasing factor and oxytocin or vasopressin in the rat paraventricular nucleus. Arch Histol Jpn 47:475–483

    PubMed  CAS  Google Scholar 

  • Thureson-Klein A (1983) Exocytosis from large and small dense-core vesicles in noradrenergic nerve terminals. Neuroscience 10:245–252

    PubMed  CAS  Google Scholar 

  • Tilders FJH, Smelik PG (1977) Direct neural control of MSH secretion in mammals: the involvement of dopaminergic tubero-hypophyseal neurones. Front Horm Res 4:80–93

    PubMed  CAS  Google Scholar 

  • Torok B (1954) Lebendbeobachtung des Hypophysenkreislaufes an Hunden. Acta Morphol Hung 4:83–89

    CAS  Google Scholar 

  • Torok B (1964) Structure of the vascular connections of the hypothalamo-hypophysial region. Acta Anat 59:84–99

    Google Scholar 

  • Tranzer JP, Richards JG (1976) Ultrastructural cytochemistry of biogenic amines in nervous tissue: methodologic improvements. J Histochem Cytochem 24:1178–1193

    PubMed  CAS  Google Scholar 

  • Tranzer JP, Theonen H (1967) Electronmicroscopic localization of 5-hydroxydopamine (3,4,5-trihydroxyphenyl-ethylamine) a new “false” sympathetic transmitter. Experentia 23:743–745

    CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1980 a) Evidence for dynamic interactions between pituicytes and neurosecretory axons in the rat. Neuroscience 5:661–667

    PubMed  CAS  Google Scholar 

  • Tweedle CD, Hatton GI (1980 b) Glial cell enclosure of neurosecretory endings in neurohypophysis of the rat. Brain Res 192:555–559

    Google Scholar 

  • Tweedle CD, Hatton GI (1982) Magnocellular neuropeptidergic terminals in the neurohypophysis: rapid glial release of enclosed axons during parturition. Brain Res Bull 8:205–209

    PubMed  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Liston DR, Rossier J (1983) Proenkephalin, (Met)enkephalin and oxytocin immunoreactivities are colocalized in bovine hypothalamic magnocellular neurons. Proc Natl Acad Sci USA 80:5139–5143

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin-and of the oxytocin-producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res 164:153–162

    PubMed  CAS  Google Scholar 

  • Vandesande F, Dierickx K, DeMey J (1977) The origin of vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis. Cell Tissue Res 180:443–452

    PubMed  CAS  Google Scholar 

  • VanDyke HB, Adamsons K, Engel SL (1955) Aspects of the biochemistry and physiology of the neurohypophyseal hormones. Recent Prog Horm Res 11:1–41

    Google Scholar 

  • Vannucci S, Hawkins R (1983) Substrates of energy metabolism of the pituitary and pineal glands. J Neurochem 41:1718–1725

    PubMed  CAS  Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond [Biol] 135:25–106

    CAS  Google Scholar 

  • Vigh S, Horvath J, Schally AV, Arimura A, Setalo G (1978) Simultaneous localization of luteinizing hormone-releasing hormone (LH-RH) and somatostatin-containing nerve fibres in the brain of the rat. Acta Biol Acad Sci Hung 29:291–294

    PubMed  CAS  Google Scholar 

  • Vigneaud duV, Lawler HC, Popenoe EA (1953) Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J Am Chem Soc 75:4880–4881

    Google Scholar 

  • Vina JR, Page RB, Davis DW, Hawkins RA (1984) Aerobic glycolysis by the pituitary gland in vivo. J Neurochem 42:1479–1482

    PubMed  CAS  Google Scholar 

  • Visser M, Swaab DF (1977) Alpha-MSH in the human pituitary. Front Horm Res 4:42–45

    PubMed  CAS  Google Scholar 

  • Watanabe YG, Daikoku S (1976) Immunohistochemical study of adenohypophyseal primordia in organ culture. Cell Tissue Res 166:407–412

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, Greidanus TBV (1982) Dynorphin and vasopressin. Common localization in magnocellular neurons. Science 216:85–87

    PubMed  CAS  Google Scholar 

  • Weitzman RE, Glatz TH, Fisher DA (1978) The effect of hemorrhage and hypertonic saline upon plasma oxytocin and arginine vasopressin in conscious dogs. Endocrinology 103:2154–2160

    PubMed  CAS  Google Scholar 

  • Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222:1137–1139

    PubMed  CAS  Google Scholar 

  • Wingstrand KG (1966) Comparative antomy and evolution of the hypophysis. In: Harris GW, Donovan BT (eds) The pituitary gland, vol 1. Butterworths, London, pp 58–126

    Google Scholar 

  • Wislocki GB (1937 a) The vascular supply of the hypophysis cerebri of the cat. Anat Rec 69:361–387

    Google Scholar 

  • Wislocki GB (1937 b) The meningeal relations of the hypophysis cerebri. II. An embryological study of the meninges and blood vessels of the human hypophysis. Am J Anat 61:95–129

    Google Scholar 

  • Wislocki GB (1938 a) The vascular supply of the hypophysis cerebri of the rhesus monkey and man. Res Publ Assoc Res Nerv Ment Dis 17:48–68

    Google Scholar 

  • Wislocki GB (1938 b) Further observations on the blood supply of the hypophysis cerebri of the rhesus monkey. Anat Rec 72:137–150

    Google Scholar 

  • Wislocki GB, King LS (1936) The permeability of the hypophysis and hypothalamus to vital dyes, with a study of the hypophyseal vascular supply. Am J Anat 58:421–472

    Google Scholar 

  • Wittkowski W, Brinkmann H (1974) Changes of extent of neuro-vascular contacts and number of neuro-glial synaptoid contacts in the pituitary posterior lobe of dehydrated rats. Anat Embryol (Berlin) 146:157–165

    CAS  Google Scholar 

  • Wittkowski W, Scheuer A (1974) Functional changes of the neuronal and glial elements at the surface of the external layer of the median eminence. Z Anat Entwickl Gesch 143:255–262

    CAS  Google Scholar 

  • Worthington WC (1955) Some observations on the hypophyseal portal system in the living mouse. Bull Johns Hopkins Hosp 97:343–357

    PubMed  Google Scholar 

  • Worthington WC (1960) Vascular responses in the pituitary stalk. Endocrinology 66:19–31

    PubMed  CAS  Google Scholar 

  • Xuereb GP, Prichard M, Daniel PM (1954) The arterial supply and venous drainage of the human hypophysis cerebri. Q J Exp Physiol 39:199–217

    CAS  Google Scholar 

  • Ziedonis DM, Severs WB, Brennan RW, Page RB (1986) Blood flow and functional responses correlate in the ovine neural lobe. Brain Res 373:27–34

    PubMed  CAS  Google Scholar 

  • Zimmerman EA (1981) The organization of oxytocin and vasopressin pathways. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 63–74

    Google Scholar 

  • Zimmerman EA, Antunes JL (1976) Organization of the hypothalamic-pituitary system: current concepts from immunohistochemical studies. J Histochem Cytochem 24:807–815

    PubMed  CAS  Google Scholar 

  • Zimmerman EA, Robinson AG, Husain MK, Acosta M, Frantz A, Sawyer WH (1974) Neurohypophyseal peptides in the bovine hypothalamus: the relationship of neuro-physin I to oxytocin and neurophysin II to vasopressin in the supraoptic and paraventricular regions. Endocrinology 95:931–936

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Page, R.B. (1986). The Pituitary Portal System. In: Ganten, D., Pfaff, D. (eds) Morphology of Hypothalamus and Its Connections. Current Topics in Neuroendocrinology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71461-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71461-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71463-4

  • Online ISBN: 978-3-642-71461-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics