Experimental Study of the Interaction Between a Premixed Confined Laminar Flame and Coherent Structures

  • D. Escudié
  • G. Charnay

Abstract

The present work deals with the experimental study of a premixed laminar V-shaped flame, expanding in a confined combustion chamber, and interacting with coherent structures.

A tomographic technique is used to visualize the flame front and a detailed description of the instantaneous velocity (Laser Doppler Anemometry) and mean temperature field (coated thermocouple) are used.

The results are interpreted in the light of preliminary flow characterization without combustion, regarding the vortex scales compared with the flame thickness and the position of the vortex generating cylinder.

Keywords

Combustion Vortex Quartz Platinum Argon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damköhler, G. (1940): Z. Electrochem. 45, 11Google Scholar
  2. 2.
    Karlovitz, B., Denniston, D. W., Wells, D. E. (1951): J. Chem. Phys. 19, 541ADSCrossRefGoogle Scholar
  3. 3.
    Mestre, A., Benoit, A. (1973): “Combustion in Swirling Flow”, in 14th Symposium on Combustion, 719Google Scholar
  4. 4.
    Chigier, N. A., Dvorak, K. (1975): “Laser Anemometer Measurements in Flames with Swirl”, in 15th symposium on combustion, 573Google Scholar
  5. 5.
    Lilley, D. (1977): Swirl flows in combustion: A review. AIAA J. 5, 1063ADSCrossRefGoogle Scholar
  6. 6.
    Gouldin, F. C., Leibovich, S. (1979): Effect of swirl on premixed combustion. NASA Conference Publication, premixed prevaporized combustor technology forumGoogle Scholar
  7. 7.
    Fujii, S., Eguchi, K., Gomi, N. (1981): Swirling jets with and without combustion. J. 19, 1438Google Scholar
  8. 8.
    Namer, I. (1980): “An Experimental Investigation of the Interaction Between a Karman Vortex Street and a Premixed Laminar Flame”; Ph.D. Thesis Berkeley, CAGoogle Scholar
  9. 9.
    Escudié, D., Trinité, M., Paranthoën, P. (1983): Modification of turbulent flow field by an oblique premixed hydrogen-air flame. Prog. Astron. Aeron. 88, 147Google Scholar
  10. 10.
    Borghi, R., Escudié, D. (1984): Assessment of a theoretical model of turbulent combustion by comparison with a simple experiment. Combust. flame 56, 149CrossRefGoogle Scholar
  11. 11.
    Roshko, A. (1953): On the development of turbulent wakes from vortex streets. NACA Technical Note, 2913Google Scholar
  12. 12.
    Kovasznay, L. S. G. (1949): Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. Roy. Soc. Ser. A, 198, 174ADSCrossRefGoogle Scholar
  13. 13.
    Boyer, L. (1980): Laser tomographic method for flame front movements studies. Combust. Flame, 39, 321CrossRefGoogle Scholar
  14. 14.
    Dvorak, V. (1880): Ann. Physik, 3, 502ADSGoogle Scholar
  15. 15.
    Hertzberg, J. R., Namazian M., Talbot, L. (1984): A laser tomographic study of a laminar flame in a Karman vortex street. Combust. Sci. Technol. 38, 205CrossRefGoogle Scholar
  16. 16.
    Petersen, R. E., Emmons, H. W. (1961): Stability of laminar flames. Phys. Fluids 4, 456ADSMATHCrossRefGoogle Scholar
  17. 17.
    Blevins, R. D. (1977): Instabilities of tube rows and tube arrays. Flow-induced vibrations. V.N.R. Company, 88Google Scholar
  18. 18.
    Cheng, R. K., Ng, T. T. (1984): On defining the turbulent burning velocity in premixed V-shaped turbulent flames. Combust. Flame 57, 155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. Escudié
    • 1
  • G. Charnay
    • 1
  1. 1.Laboratoire de Mécanique des Fluides 36Ecole Centrale de LyonEcully CedexFrance

Personalised recommendations