Gastrin and Cholecystokinin

An Arduous Task for the Peptide Chemist
  • Luis Moroder
  • Erich Wünsch


Both during synthesis and storage as well as handling of gastrin- and cholecystokinin-peptides serious difficulties related to a sequence-dependent high reactivity of various side chain functions were encountered. Thus, methods were devised to bypass or at least control side reactions along the synthetic routes, and analogs were designed to enhance the stability of the peptide factors with concomitant retainment of full hormonal potency. The access of these gastrin- and cholecystokinin-peptides allowed intensive physiological, biological and conformational studies aimed at a better understanding of the mechanism of action of this class of hormones. Additional attention was paid to particular derivatives well suited to improve the immunochemical methods as needed for a deeper insight into the physiological significance of the remarkable heterogeneity of these gut hormones.


Side Reaction Tryptophan Residue Methionine Residue Tyrosyl Residue Peptide Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



methoxinine (oxa-analog of methionine)
















human gastrin, whereby the additional number indicates the chain-length of the gastrin peptide


thin-layer chromatography


high performance liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tracy, H.J. and Gregory, R.A. (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature, 204, 935–938.PubMedCrossRefGoogle Scholar
  2. 2.
    Gregory, H., Hardy, P.M., Jones, P.S., Kenner, G.W. and Sheppard, R.C. (1964) The antral hormon gastrin; structure of gastrin. Nature, 204, 931–933.PubMedCrossRefGoogle Scholar
  3. 3.
    Gregory, R.A. and Tracy, H.J. (1966) Isolation of two gastrins from human antral mucosa. Nature, 209, 583.PubMedCrossRefGoogle Scholar
  4. 4.
    For review see Mutt, V. (1983) Chemistry of the Gastrointestinal Hormones and Hormone-like Peptides and a Sketch of Their Physiology and Pharmacology. Vitamins and Hormones. Vol. 39, 231–427.CrossRefGoogle Scholar
  5. 5.
    Wünsch, E. and Deimer, K.H. (1972) Zur Synthese des [15-Leucin]Human-Gastrin I. II. Mitteilung: Herstellung der Gesamtsequenz. Hoppe-Seyler’s Z. Physiol.Chem. 353, 1255–1258.PubMedCrossRefGoogle Scholar
  6. 6.
    Wünsch, E., Jaeger, E., Deffner, M. and Scharf, R. (1972) Zur Synthese des [15-Leucin]Human-Gastrins I. III. Mitteilung: Zur Reindarstellung des synthetischen Heptadecapeptidamids. Hoppe-Seyler’s Z. Physiol.Chem. 353, 1716–1720.PubMedCrossRefGoogle Scholar
  7. 7.
    Wünsch, E., Wendlberger, G., Hallet, A., Jaeger, E., Knof, S., Moroder, L., Scharf, R., Schmidt, I., Thamm, P. and Wilschowitz, L. (1977) Zur Totalsynthese des Human-Big-gastrins I und seines 32-Leucin-Analogons. Z. Naturforsch. 32c, 495–506.Google Scholar
  8. 8.
    Wünsch, E., Wendlberger, G., Mladenova-Orlinova, L., Göhring, W., Jaeger, E., Scharf, R., Gregory, R.A. and Dockray, G.J. (1981) Totalsynthese des Human-Big-Gastrins I, Revidierte Primärstruktur. Hoppe-Seyler’s Z. Physiol. Chem. 362, 179–185.PubMedCrossRefGoogle Scholar
  9. 9.
    Moroder, L., Dress, F., Jaeger, E. and Wünsch, E. (1978) Zur Synthese von [11-Leucin]Human-Minigastrin I. Darstellung der Gesamtsequenz. Hoppe-Seyler’s Z. Physiol. Chem. 359, 155–164.PubMedGoogle Scholar
  10. 10.
    Jaeger, E., Thamm, P., Schmidt, J., Knof, S., Moroder, L. and Wünsch, E. (1978) Zur Synthese von [11-Leucin]Human-Minigastrin I. II. Mitteilung: Reindarstellung des synthetischen Tridekapeptidamids sowie Isolierung und Strukturaufklärung eines Synthese-Nebenprodukts. Hoppe-Seyler’s Z. Physiol.Chem. 359, 155–164.PubMedGoogle Scholar
  11. 11.
    Moroder, L., Göhring, W., Nyfeler, R., Scharf, R., Thamm, P. and Wendlberger, G. (1983) Zur Synthese von Human-Little-Gastrin I und dessen Leucin-15, Norleucin-15 und Methoxinin-15-Analoga. Hoppe-Seyler’s Z. Physiol. Chem. 264, 157–171.CrossRefGoogle Scholar
  12. 12.
    Göhring, W., Moroder, L., Borin, G., Lobbia, A., Bali, J.P. and Wünsch, E. (1984) Synthese von Gastrinaktiven Peptiden. Untersuchungen zur Struktur-Wirkungsbeziehungen des natürlichen Hormons Human-Little-Gastrin I. Hoppe-Seyler’s Z. Physiol. Chem. 365, 83–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Moroder, L., Wilschowitz, L., Jaeger, E., Knof, S., Thamm, P. and Wünsch, E. (1979) Synthese von Tyrosin-O-sulfat-haltigen Peptiden. Hoppe-Seyler’s Z. Physiol. Chem. 360, 787–790.PubMedGoogle Scholar
  14. 14.
    Wünsch, E., Moroder, L., Wilschowitz, L., Göhring, W., Scharf, R. and Gardner, J.D. (1981) Zur Totalsynthese von Cholecystokinin-Pankreozymin. Darstellung des verknüpfungsfähigen “Schlüsselfragments” der Sequenz 24–33. Hoppe-Seyler’s Z. Physiol. Chem. 362, 143–152.PubMedCrossRefGoogle Scholar
  15. 15.
    Moroder, L., Wilschowitz, L., Gemeiner, M., Göhring, W., Knof, S. Scharf, R., Thamm, P., Gardner, J.D., Solomon, T.E. and Wünsch E. (1981) Zur Synthese von Cholecystokinin-Pankreozymin. Darstellung von [28-Threonin, 31-Nor1euein]-und [28-Threonin, 31-Leucin] Cholecystokinin-Pankreozymin-(25–33)-Nonapeptid. Hoppe-Seyler’s Z. Physiol. Chem. 362, 929–942.PubMedCrossRefGoogle Scholar
  16. 16.
    Morley, J.S., Tracy, H.J. and Gregory, R.A. (1965) Strukture-function relationships in the actice C-terminal tetrapeptide sequence of gastrin. Nature 207, 1356–1359.PubMedCrossRefGoogle Scholar
  17. 17.
    Morley, J.S. (1967) Synthesis of human gastrin (I) and the biological properties of analogues. Peptides 1966 (H. Beyermann, Ed.) North-Holland, Amsterdam pp. 226–234.Google Scholar
  18. 18.
    Houghten, R.A. and Li, C.H. (1979) Reduction of Sulfoxides in Peptides and Proteins. Anal. Biochem. 98, 36–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Kenner, G.W. Mendive, J.J. and Sheppard, R.C. (1968) Analogues of gastrin containing leucine in place of methionine. J. Chem. Soc. (C), 761–764.Google Scholar
  20. 20.
    Wünsch, E., Moroder, L., Gillessen, D., Soerensen, U.C. and Bali, J.-P. (1982) Biological and immunological properties of human gastrin I analogues. Hoppe-Seyler’s Z. Physiol. Chem. 363, 665–669.PubMedCrossRefGoogle Scholar
  21. 21.
    Wünsch, E., Jaeger, E. and Scharf, R. (1968) Zur Synthese des Glukagons.XIX. Reindarstellung des synthetischen Glukagons. Chem. Ber. 101, 3664–3670.PubMedCrossRefGoogle Scholar
  22. 22.
    Gregory, R.A. and Tracy, H.J. (1974) Isolation of two minigastrins from Zollinger-Ellison tumor tissue. Gut, 15, 683–685.PubMedCrossRefGoogle Scholar
  23. 23.
    Wünsch, E., Jaeger, E., Kisfaludy, L. and Löw, M. (1977) Nebenreaktionen in der Peptidsynthese: tert-Butylierung des Tryptophans. Angew. Chem. 89, 330–331;CrossRefGoogle Scholar
  24. 23a.
    Wünsch, E., Jaeger, E., Kisfaludy, L. and Löw, M. (1977) Nebenreaktionen in der Peptidsynthese: tert-Butylierung des Tryptophans. Int. Edn. Engl. 16, 317–318.CrossRefGoogle Scholar
  25. 24.
    Moroder, L., Gemeiner, M., Göhring, W., Jaeger, E., Thamm, P. and Wünsch, E. (1981) New Synthesis of Somatostatin According to the S-tert-Buthylthiocysteine Procedure. Biopolymers, 20, 17–37.PubMedCrossRefGoogle Scholar
  26. 25.
    Wendlberger, G. (1976) Discussion. Peptides 1976, Proc. 14th Eur. Peptide Sympos. (Loffet, A., ed.) p. 60, Editions de l’Université de Bruxelles, Bruxelles.Google Scholar
  27. 26.
    König, W. and Geiger, R. (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxy-benzotriazolen. Chem. Ber. 103, 788–798.PubMedCrossRefGoogle Scholar
  28. 27.
    Sieber, P., Kamber, B., Hartmann, A., Jöhl, A., Riniker, B. and Rittel, W. (1977) Totalsynthese von Humaninsulin. IV. Beschreibung der Endstufen. Helv. Chim. Acta, 60, 27–37.PubMedCrossRefGoogle Scholar
  29. 28.
    Wünsch, E. (1983) Peptide Factors as Pharmaceuticals: Criteria for Application. Biopolymers, 22, 493–505.PubMedCrossRefGoogle Scholar
  30. 29.
    Moroder, L., Göhring, W., Lucietto, P., Musiol, J., Scharf, R., Thamm, P., Bovermann, G., Wünsch, E., Lundberg, J., Tatemoto, K. and Mutt, V. (1983) Synthesis of the Porcine Intestinal Peptide PHI and its 24-Glutamine Analogue. Hoppe-Seyler’s Z. Physiol. Chem. 364, 1563–1584.PubMedCrossRefGoogle Scholar
  31. 30.
    Weygand, F., Hoffmann, D. and Wünsch, E. (1966) Peptid-synthesen mit Dicyclohexylcarbodiimid unter Zusatz von N-Hydroxysuccinimid. Z. Naturforsch. 21b, 426–428.Google Scholar
  32. 31.
    Aigner, H., Koch, G. and Marquarding, D. (1982) Isocyanides as Activating Reagents in Peptide Synthesis. Chemistry of Peptides and Proteins, Proc. 3th USSR-FRG Symp. 1980 (Voelter, W., Wünsch, E., Ovchinnikov, Y. and Ivanov, V. eds.) pp. 207–216, Walter de Gruyter and Co., Berlin-New York.Google Scholar
  33. 32.
    Frank, H., Nicholson, G.J. and Bayer, E. (1977) Rapid Gaschromatographic Separation of Amino Acid Enantiomers with a Novel Chiral Stationary Phase. J. Chromatogr. Sci. 15, 174–176.PubMedGoogle Scholar
  34. 33.
    Beacham, J., Bentley, P.H., Kenner, G.W., Macleod, J.K., Mendive, J.J. and Sheppard, R.C. (1967) The structure and synthesis of human gastrin. J. Chem. Soc. (C), 2520–2529.Google Scholar
  35. 34.
    Anastasi, A., Bernardi, L., Bertaccini, G., Bosisio, G., de Castiglione, R. Erspamer, V., Goffredo, O. and Impicciatore, M. (1968) Synthetic Peptides Related to Caerulein. Experientia, 24, 771–773.PubMedCrossRefGoogle Scholar
  36. 35.
    Ondetti, M.A., Pluščec, J., Sabo, E.F., Sheehan, J.T. and Williams, N. (1970) Synthesis of Cholecystokinin-Pancreozymin. I. The C-Terminal Dodecapeptide. J. Am. Chem. Soc. 92, 195–199.PubMedCrossRefGoogle Scholar
  37. 36.
    Bodansky, M. (1977) Peptide Synthesis: An Undiminshed Challenge in Peptides. Proc. 5th. Am. Peptide Sympos. (Goodmann, M. and Meienhofer, J., eds). pp. 1–13, John Wiley and Sons, New York.Google Scholar
  38. 37.
    Tanford, C. (1962) Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins. J. Am. Chem. Soc. 84, 4240–4247.CrossRefGoogle Scholar
  39. 38.
    Koulischer, D., Moroder, L., and Deschodt-Lanckmann, M. (1982) Degradation of cholecystokinin octapeptide, related fragments and analogs by human and rat plasma in vitro. Arch. Int. Physiol. Biochim. 90, B42–B45.Google Scholar
  40. 39.
    Alexander, N.M. (1974) Oxidative Cleavage of Tryptophanyl Peptide Bonds during Chemical- and Peroxidase-Iodinations. J. Biol. Chem. 249, 1946–1952.PubMedGoogle Scholar
  41. 40.
    Mourier, G., Moroder, L. and Previero, A. (1984) Prevention of Tryptophan Oxidation during Iodination of Tyrosyl Residues in Peptides. Z. Naturforsch. 39b, in press.Google Scholar
  42. 41.
    Moroder, L., Nyfeler, R., Gemeiner, M., Kaibacher, H. and Wünsch, E. (1983) Immunoassays of Peptide Hormones and Their Chemical Aspects. Biopolymers, 22, 481–486.PubMedCrossRefGoogle Scholar
  43. 42.
    Rehfeld, J.F., Larsson, L.I., Goltermann, V.R., Schwartz, T.W., Holst, J.J., Jensen, S.L. and Morley, J.S. (1980) Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature, 284, 33–38.PubMedCrossRefGoogle Scholar
  44. 43.
    Peggion, E., Jaeger, E., Knof, S., Moroder, L. and Wünsch, E. (1981) Conformational Aspects of Gastrin-Related Peptides: A Circular Dichroism Study. Biopolymers, 20, 633–652.PubMedCrossRefGoogle Scholar
  45. 44.
    Peggion, E., Foffani, M.T., Wünsch, E., Moroder, L., Borin, G. and Goodmann, M. (1984) Conformational Properties of Gastrin Fragments of Increasing Chain Length. Biopolymers; submitted for publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Luis Moroder
    • 1
  • Erich Wünsch
    • 1
  1. 1.Abteilung PeptidchemieMax-Planck-Institut für BiochemieMartinsried bei MünchenGermany

Personalised recommendations