Regulation of the β-Adrenergic Receptor-Adenylate Cyclase System in Cardiac Membranes

  • W. Krawietz
Conference paper

Abstract

The idea that drugs react with receptors was initiated by Langley [47] and Paul Ehrlich [27]. In small concentrations, some drugs induce a biological effect, whereas other drugs with different structures cause a comparable effect only in much higher concentrations. Paul Ehrlich [28] introduced the hypothesis that drugs that are effective in small concentrations are bound to a specific membrane protein (receptor). He pronounced the well-known sentence: corpora non agent nisi fixata.

Keywords

Angiotensin Histamin Turkey Norepinephrine Cardiomyopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153: 586–600PubMedGoogle Scholar
  2. 2.
    Ahlquist RP (1976) Adrenergic beta-blocking agents. Proc Drug Res 20: 27–42Google Scholar
  3. 3.
    Ahren K, Albertsson-Wikland K, Isaksson O, Kostyo JL (1976) Cellular mechanism of the acute stimulatory effect of growth hormone. In: Pecile A, Miiller EE (eds) Growth hormone and related peptides. Excerpta Medica, Amsterdam, pp 94–103Google Scholar
  4. 4.
    Akera T (1977) Membrane adenosinetriphosphatase: a digitalis receptor? Science 198: 596–574CrossRefGoogle Scholar
  5. 5.
    Alexander RW, Davis JN, Lefkowitz RJ (1975) Direct identification and characterization of β-adrenergic receptors in the rat brain. Nature 258: 437–440PubMedCrossRefGoogle Scholar
  6. 6.
    Aurbach GD, Fedak SA, Woodard CJ, Palmer JS, Hauser D, Troxler F (1974) β-Adrenergic receptor: stereospecific interaction of iodinated β-blocking agent with high affinity site. Science 186: 1223–1224Google Scholar
  7. 7.
    Bataille D, Freychet P, Rosselin G (1974) Interaction of glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell membranes: binding to specific sites and stimulation of adenylate cyclase. Endocrinology 95: 713–721PubMedCrossRefGoogle Scholar
  8. 8.
    Baulieu EE (1975) Commentary. Steroid receptors and hormone receptivity: new approaches in pharmacology and therapeutics. Biochem Pharmacol 24: 1743–1748PubMedCrossRefGoogle Scholar
  9. 9.
    Bertel O, Biihler FR, Kiowski W, Liitold BE (1980) Decreased β-adrenoceptor responsiveness as related to age, blood pressure, and plasma catecholamines in patients with essential hypertension. Hypertension 2: 130–138PubMedGoogle Scholar
  10. 10.
    Bhalla RC, Sharma RV, Ramanathan S (1980) Ontogenetic development of isoproterenol sub- sensitivity of myocardial adenylate cyclase and β-adrenergic receptors in spontaneously hypertensive rats. Biochim Biophys Acta 632: 497–506PubMedCrossRefGoogle Scholar
  11. 11.
    Bilezikian JP, Aurbach GD (1973) β-Adrenergic receptor of the turkey erythrocyte: I. Binding of catecholamine and relationship to adenylate cyclase activity. J Biol Chem 248: 5577–5583Google Scholar
  12. 12.
    Bilezikian JP, Aurbach DD (1974) The effects of nucleotide on the expression of β-adrenergic adenylate cyclase in membranes from turkey erythrocytes. J Biol Chem 249: 157–161PubMedGoogle Scholar
  13. 13.
    Bristow M, Sherrod TP, Green RD (1970) Analysis of beta-receptor drug interactions in isolated rabbit atrium, aorta, stomach and trachea. J Pharmacol Exp Ther 171: 52–61PubMedGoogle Scholar
  14. 14.
    Brown EM, Aurbach GD, Hauser D, Troxler F (1976) β-Adrenergic receptor interactions: char-acterization of iodohydrooxybenzylpindolol as a specific ligand. J Biol Chem 251: 1232–1238Google Scholar
  15. 15.
    Brown L, Werdan K, Erdmann E (1983) Consequences of specific 3H-ouabain binding to guinea pig left atria and cardiac cell membranes. Biochem Pharmacol 32: 423–435PubMedCrossRefGoogle Scholar
  16. 16.
    Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl-nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669PubMedCrossRefGoogle Scholar
  17. 17.
    Cassel D, Sciinger Z (1976) Catecholamine stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 452: 538–551PubMedGoogle Scholar
  18. 18.
    Cassel D, Sciinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74: 3307–3311PubMedCrossRefGoogle Scholar
  19. 19.
    Cassel D, Sciinger Z (1978) Mechanism of adenylate activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTR Proc Natl Acad Sci USA 75: 4155–4159Google Scholar
  20. 20.
    Cuatrecasas P (1973) Insulin receptor of liver and fat cell membranes. Fed Proc 32: 1838–1846PubMedGoogle Scholar
  21. 21.
    Cuatrecasas P (1974) Membrane receptors. Ann Rev Biochem 43: 169–214PubMedCrossRefGoogle Scholar
  22. 22.
    Cuatrecasas P, Hollenberg MD (1975) Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent negative cooperativity. Biochem Biophys Res Commun 62: 31–41PubMedCrossRefGoogle Scholar
  23. 23.
    Cuatrecasas P, Hollenberg MD (1976) Membrane receptors and hormone action. Adv Protein Chem 30: 251–451PubMedCrossRefGoogle Scholar
  24. 24.
    De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled ß-adrenergic receptor. J Biol Chem 255: 7108–7117PubMedGoogle Scholar
  25. 25.
    Downs RW, Spiegel AM, Singer M, Reen S, Aurbach GD (1980) Fluoride stimulation of adenylate cyclase is dependent on the guanine nucleotide regulatory protein. J Biol Chem 255: 949–954PubMedGoogle Scholar
  26. 26.
    Drummond GI, Severson DL (1974) Preparation and characterization of adenylate cyclase from heart and skeletal muscle. In: Hardman JG, O’Malley BW(eds) Methods in enzymology, vol 38. Academic, New York, pp 143–149Google Scholar
  27. 27.
    Ehrlich P (1909) Über den jetzigen Stand der Chemotherapie. Dtsch Chem Ges 42: 17CrossRefGoogle Scholar
  28. 28.
    Ehrlich P (1913) Address in pathology on chemotherapeutics: scientific principles, methods, and results. Lancet 16: 445–451Google Scholar
  29. 29.
    Erdmann E (1977) Cell membrane receptors for cardiac glycosides in the heart. Basic Res Cardiol 72: 315–325PubMedCrossRefGoogle Scholar
  30. 30.
    Finn FM, Widnell CC, Hofmann K (1972) Localisation of an adrenocorticotropic hormone receptor on bovine adrenal cortical membranes. J Biol Chem 247: 5695–5702PubMedGoogle Scholar
  31. 31.
    Forgue ME, Freychet P (1975) Insulin receptors in the heart muscle. Diabetes 24: 715–723PubMedCrossRefGoogle Scholar
  32. 32.
    Gill DM (1975) Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc Natl Acad Sci USA 72: 2064–2068PubMedCrossRefGoogle Scholar
  33. 33.
    Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75: 3050–3054PubMedCrossRefGoogle Scholar
  34. 34.
    Goodfriend T, Lin SY (1969) Angiotensin receptors. Clin Res 17: 243–248Google Scholar
  35. 35.
    Hall ZW (1972) Release of neurotransmitters and their interactions with receptors. Ann Rev Biochem 41: 925–952PubMedCrossRefGoogle Scholar
  36. 36.
    Harden TK, Wolfe BB, Molinoff PB (1976) Binding of iodinated beta adrenergic antagonists to proteins derived from rat heart. Mol Pharmacol 12: 1–15PubMedGoogle Scholar
  37. 37.
    Hollenberg DM, Cuatrecasas P (1978) Membrane receptors and hormone action: recent developments. Prog Neuropsychopharmacol Biol Psychiatry 2: 287–302Google Scholar
  38. 38.
    Karlin A (1973) Molecular interactions of the acetylcholine receptor. Fed Proc 32: 1847–1853PubMedGoogle Scholar
  39. 39.
    Kaslow HR, Farfel Z, Johnson GL, Bourne HR (1979) Adenylate cyclase assembled in vitro: cholera toxin substrates determine different patterns of regulation by isoproterenol and guano- sine 5′-triphosphate. Mol Pharmacol 15: 472–483PubMedGoogle Scholar
  40. 40.
    Kaslow HR, Johnson GL, Brothers VM, Bourne HR (1980) A regulatory component of adenylate cyclase from human erythrocyte membranes. J Biol Chem 255: 3736–3741PubMedGoogle Scholar
  41. 41.
    Korolkovas A (1974) Grundlagen der molekularen Pharmakologie. Thieme, Stuttgart, pp 7–9Google Scholar
  42. 42.
    Krawietz W, Erdmann E (1979) Specific and unspecific binding of 3H-(-)-dihydroalprenolol to cardiac tissue. Biochem Pharmacol 28: 1283–1288PubMedCrossRefGoogle Scholar
  43. 43.
    Krawietz W, Poppert D, Erdmann E, Glossmann H, Struck CJ, Konrad C (1976) ß-Adrenergic receptors in guinea-pig myocardial tissue. Naunyn-Schmiedebergs Arch Pharmacol 295: 215–224PubMedCrossRefGoogle Scholar
  44. 44.
    Krawietz W, Werdan K, Erdmann E (1982) Effect of thyroid status on β-adrenergic receptor, ad-enylate cyclase activity and guanine nucleotide regulatory unit in rat cardiac and erythrocyte membranes. Biochem Pharmacol 31: 2463–2469PubMedCrossRefGoogle Scholar
  45. 45.
    Lad PM, Nielsen TB, Preston MS, Rodbell M (1980) The role of the guanine nucleotide exchange reaction in the regulation of the β-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes. J Biol Chem 255: 988–995PubMedGoogle Scholar
  46. 46.
    Laemmli VK (1975) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685CrossRefGoogle Scholar
  47. 47.
    Langley JW (1906) On nerve endlings and on special exitable substances. Proc Roy Soc 78: 170–194CrossRefGoogle Scholar
  48. 48.
    Lefkowitz RJ (1976) Adrenergic receptors: recognition and regulation. N Engl J Med 295: 323–328PubMedCrossRefGoogle Scholar
  49. 49.
    Lefkowitz RJ, Williams LT (1978) Molecular mechanism of activation and desensitization of adenylate cyclase coupled beta-adrenergic receptors. Adv Cyclic Nucleotide Res 9: 1–17PubMedGoogle Scholar
  50. 50.
    Lefkowitz RJ, Pastan D, Roth J, Pricer W (1970) ACTH receptors in the adrenal: specific binding of ACTH-125J and its relation to adenylate cyclase. Proc Natl Acad Sci USA 65: 745–752PubMedCrossRefGoogle Scholar
  51. 51.
    Lesniak MA, Gorden P, Roth J, Gavin JR (1974) Binding of 125J-human growth hormone to specific receptors in human cultured lymphocytes. Characterization of the interaction and a sensitive radioceptor assay. J Biol Chem 249: 1661–1667Google Scholar
  52. 52.
    Levey GS (1970) Solubilization of myocardial adenyl cyclase. Biochem Biophys Res Commun 38: 86–92PubMedCrossRefGoogle Scholar
  53. 53.
    Levey GS, Fletcher MA, Klein I, Ruiz E, Schenk A (1974) Characterization of 125I-Glucagon binding in a solubilized preparation of cat myocardial adenylate cyclase. J Biol Chem 249: 2665–2673PubMedGoogle Scholar
  54. 54.
    Levitzki A, Atlas D, Steer ML (1974) The binding characteristics and number of β-adrenergic receptors on the turkey erythrocyte. Proc Natl Acad Sci USA 71: 2773–2776PubMedCrossRefGoogle Scholar
  55. 55.
    Limas C, Limas CJ (1978) Reduced number of β-adrenergic receptors in the myocardium of spontaneously hypertensive rats. Biochem Biophys Res Commun 83: 710–714PubMedCrossRefGoogle Scholar
  56. 56.
    Limbird LE (1981) Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling. Biochem J 195: 1–13PubMedGoogle Scholar
  57. 57.
    Limbird LE, Lefkowitz RJ (1978) Agonist-induced increase in apparent β-adrenergic receptor size. Proc Natl Acad Sci USA 75: 228–232PubMedCrossRefGoogle Scholar
  58. 58.
    Limbird LE, Gill DM, Lefkowitz RJ (1980) Agonist-promoted coupling of the β-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Proc Natl Acad Sci USA 77: 775–779PubMedCrossRefGoogle Scholar
  59. 59.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  60. 60.
    Maguire ME, Ross EM, Gilman AG (1977) /?-Adrenergic receptor: ligand binding properties and the interaction with adenylate cyclase. Adv Cyclic Nucleotide Res 8: 1–83Google Scholar
  61. 61.
    Malbon CC, Gill DM (1979) ADP-ribosylation of membrane proteins and activation of adenylate cyclase by cholera toxin in fat cell ghosts from euthyroid and hypothyroid rats. Biochim Biophys Acta 586: 518–527PubMedCrossRefGoogle Scholar
  62. 62.
    Moore WV, Wolff J (1974) Thyroid-stimulating hormone binding to beef thyroid membranes. Relation to adenylate cyclase activity. J Biol Chem 249: 6255–6263Google Scholar
  63. 63.
    Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Annu Rev Biochem 48: 581PubMedCrossRefGoogle Scholar
  64. 64.
    Moss J, Stanley SJ, Lin MC (1979) NAD glycohydrolase and ADP-ribosyltransferase activities are intrinsic to the A!-peptide of choleragen. J Biol Chem 254: 11993–11996PubMedGoogle Scholar
  65. 65.
    Nakaya S, Moss J, Vaughan M (1980) Effects of nucleotide triphosphate on choleragen-activated brain adenylate cyclase. Biochemistry 19: 4871PubMedCrossRefGoogle Scholar
  66. 66.
    Nielson TB, Lad PM, Preston MS, Rodbell M (1980) Characteristics of the guanine nucleotide regulatory component of adenylate cyclase in human erythrocyte membranes. Biochim Biophys Acta 629: 143–155CrossRefGoogle Scholar
  67. 67.
    O’Farrell PZ, Gold LM, Huang WM (1973) The identification of prereplicative bacteriophage T4 protein. J Biol Chem 248: 5499–5501PubMedGoogle Scholar
  68. 68.
    Owen DAA (1977) Histamin receptors in the cardiovascular system. Gen Pharmacol 8: 141–156PubMedCrossRefGoogle Scholar
  69. 69.
    Pasternak GW, Snyder SH (1975) Opiate receptor binding: enzymatic treatments that discriminate between agonist and antagonist interactions. Mol Pharmacol 11: 478–484Google Scholar
  70. 70.
    Pfeuffer T (1977) GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem 252: 7224–7243PubMedGoogle Scholar
  71. 71.
    Pfeuffer T (1979) Guanine nucleotide-controlled interactions between components of adenylate cyclase. FEBS Lett 101: 85–89PubMedCrossRefGoogle Scholar
  72. 72.
    Powel JR, Brody MJ (1976) Identification and specific blockade of two receptors for histamine in the cardiovascular system. J Pharmacol Exp Ther 196: 1–14Google Scholar
  73. 73.
    Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22PubMedCrossRefGoogle Scholar
  74. 74.
    Roth J (1973) Peptide hormone binding to receptors: a review of direct studies in vitro. Metabolism 22: 1059–1073PubMedCrossRefGoogle Scholar
  75. 75.
    Salomon Y, Lin MC, Londons C, Rendell M, Rodbell M (1975) The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanin nucleotide activation. J Biol Chem 250: 4239–4225Google Scholar
  76. 76.
    Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672CrossRefGoogle Scholar
  77. 77.
    Spiegel AM, Aurbach GD (1974) Binding of 5′-guanylylimidodiphosphate to turkey erythrocyte membranes and effects on /?-adrenergic-activated adenylate cyclase. J Biol Chem 249: 7630–7636PubMedGoogle Scholar
  78. 78.
    Spiegel AM, Downs RW (1981) Guanine nucleotides: key regulators of hormone receptor-adenylate cyclase interaction. Endocrine Rev 2: 275–305CrossRefGoogle Scholar
  79. 79.
    Spiegel AM, Downs RW, Aurbach GD (1977) Guanosine 5′-α-ß-methylene, triphosphate, a novel GTP analog, causes persistent activation of adenylate cyclase: evidence against pyrophos- phorylation mechanism. Biochem Biophys Res Commun 76: 758–764PubMedCrossRefGoogle Scholar
  80. 80.
    Spiegel AM, Downs RW, Levine MA, Singer MJ, Krawietz W, Marx SJ, Woodard CJ, Reen SA, Aurbach GD (1981) The role of guanine nucleotides in regulation of adenylate cyclase activity. Rec Prog Horm Res 37: 635–665PubMedGoogle Scholar
  81. 81.
    Spiegel AM, Gierschik P, Levine MA, Downs RW (1985) Clinical implications of guanine nucleotide-binding protein as receptor-effector couplers. N Engl J Med 312: 26–33PubMedCrossRefGoogle Scholar
  82. 82.
    Stadel JM, Shorr RGL, Lefkowitz RJ (1981) Receptor associated guanine nucleotide regulatory protein reconstitutes GTP-γ-S stimulated adenylate cyclase activity. Adv Cyclic Nucleotide Res 14: 659Google Scholar
  83. 83.
    Sternweis PC, Gilman AG (1979) Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S49 lymphoma cell. J Biol Chem 254: 3333–3340PubMedGoogle Scholar
  84. 84.
    Sternweis PC, Northup JK, Hanski E, Schleifer LS, Smigel MD, Gilman AG (1981) Purification and properties of the regulatory component ( G/F) of adenylate cyclase. Adv Cyclic Nucleotide Res 14: 23–36Google Scholar
  85. 85.
    Teschemacher H (1978) Endogeneous ligands of opiate receptors (endorphins). In: Herz A (ed) Developments in opiate research. Dekker, New York, pp 68–125Google Scholar
  86. 86.
    Watkins PA, Moss J, Vaughan M (1980) Effects of GTP on choleragen-catalyzed ADP-ribosylation of membrane and soluble proteins. J Biol Chem 255: 3959–3963PubMedGoogle Scholar
  87. 87.
    Woodcock EA, Johnston CI (1980) Changes in tissue alpha- and beta-adrenergic receptors in renal hypertension in the rat. Hypertension 2: 156–161PubMedGoogle Scholar
  88. 88.
    Woodcock EA, Funder JW, Johnston CI (1979) Decreased cardiac β-adrenergic receptors in de- oxycorticosterone-salt and renal hypertensive rats. Circ Res 45: 560–565PubMedGoogle Scholar
  89. 89.
    Woodcock EA, Ollson CA, Johnston CI (1980) Reduced vascular beta-adrenergic receptors in deoxycorticosterone-salt hypertensive rats. Biochem Pharmacol 29: 1465–1468PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Krawietz
    • 1
  1. 1.Medizinische Klinik I, Zentralklinikum AugsburgLehrkrankenhaus der Ludwig-Maximilians-Universität MünchenAugsburgFederal Republic of Germany

Personalised recommendations