Advertisement

Photodetection and Induced Squeezing

  • P. D. Drummond
Part of the Springer Proceedings in Physics book series (SPPHY, volume 12)

Abstract

Traditional photodetection theories usually involve either perturbation expansions or the rotating wave approximation. The first type of approximation is necessarily restricted to inefficient photodetection. The second type has the drawback that it ignores corrections due to virtual quanta. A new technique is introduced here in which a canonical transformation is used to transform the Hamiltonian to one which has no counter-rotating terms. As well as allowing an exact treatment of one-mode photodetection, the theory predicts the existence of squeezing induced by the detector coupling.

Keywords

Unitary Transformation Canonical Transformation Rotate Wave Approximation Minimal Coupling True Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Planck, M., Verh. dt. phys. Ges. 2, 202 & 237 (1900); Einstein, A. Annln Phys. 17, 132 (1905).Google Scholar
  2. 2.
    Glauber, R.J., Phys. Rev. 130, 2529 (1963).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H.J. Carmichael & D.F. Walls, J.Phys. 9B, L43 & 1199 (1976).Google Scholar
  4. 4.
    H.J. Kimble, M. Dagenais & L. Mandel, Phys.Rev.Lett. 39, 691 (1977) & Phys.Rev.Lett. 18A, 201 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    D.W. Robinson, Comm.Math.Phys. 1, 159 (1965).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    For a review on squeezing, see D.F. Walls, Nature (London) 306, 141 (1983).ADSCrossRefGoogle Scholar
  7. 7.
    B.R. Mollow, Phys. Rev. 168, 1896 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    E.A. Power & S. Zienau, Phil.Trans.Roy.Soc.Lond. A251, 427 (1959). Also see: W.P Healey, “Non-relativistic Quantum Electrodynamics” ( Academic Press, London, 1982 ).MathSciNetADSGoogle Scholar
  9. 9.
    H.J. Kimble & L. Mandel, Phys.Rev. A30, 844 (1984); R.S. Bondurant, Phys.Rev. A32, 2797 (1985).ADSGoogle Scholar
  10. 10.
    W.H. Louisell, “Quantum Statistical Properties of Radiation” ( Wiley, New York, 1973 ).Google Scholar
  11. 11.
    J.D. Cresser, Physics Reports 94, 47 (1983).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    F. Persico, E.A. Power, preprint (to appear, Physics Letters).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. D. Drummond
    • 1
  1. 1.Physics DepartmentUniversity of AucklandAucklandNew Zealand

Personalised recommendations