The Cell Envelope of Gram-Negative Bacteria: New Aspects of Its Function in Transport and Chemotaxis

  • J. M. Brass
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 129)


The appearance of protein synthesis controlled by nucleic acids was one of the crucial events in prebiotic evolution. Such systems, able to perform metabolism and replication of macromolecules, existed long before the first cells. We sometimes overlook the evolutionary significance of the inception of membranes. The evolution of nucleic acids coding for the primitive enzymes was extremely slow in prebiotic times before development of membranes. If a variant of nucleic acid (RNA) arose that made a superior type of enzyme, the new enzyme could not selectively contribute to the replication of the new RNA in its competition with the neighboring old RNA copies. Sequestering of macro-molecules within a cell envelope greatly accelerated evolution because it linked selective propagation of this new, advantageous RNA much more tightly to the function of the superior gene product (Eigen et al. 1981).


Outer Membrane Outer Membrane Protein Cell Envelope Maltose Binding Protein Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. In: Davidson N, Reich A (eds) Structural chemistry and molecular biology. Freeman, San Francisco, pp 198–215Google Scholar
  2. Adler J (1973) A method for measuring Chemotaxis and use of the method to determine optimum conditions for Chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91PubMedGoogle Scholar
  3. Adler J, Epstein W (1974) Phosphotransferase system enzymes as chemoreceptors for certain sugars in Escherichia coli Chemotaxis. Proc Natl Acad Sci USA 71:2895–2899PubMedGoogle Scholar
  4. Agabian N, Unger B (1978) Caulobacter crescentus cell envelope: Effect of growth conditions on murein and outer membrane protein composition. J Bacteriol 133:987–994PubMedGoogle Scholar
  5. Ahlem C, Huisman W, Neslund G, Dahms AS (1982) Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K12. J Biol Chem 257:2926–2931PubMedGoogle Scholar
  6. Akiyama Y, Ito K (1985) The SecY membrane component of the bacterial protein export machinery: analysis by new electrophoretic methods. EMBO J 4:3351–3356PubMedGoogle Scholar
  7. Aksamit R, Koshland DE Jr (1972) A ribose binding protein of Salmonella typhimurium. Biochem Biophys Res Commun 48:1348–1353PubMedGoogle Scholar
  8. Alber T, Fahnestock M, Mowbray S, Petsko G (1981) Preliminary X-ray data for the galactose-binding protein from Salmonella typhimurium. J Mol Biol 147:471–474PubMedGoogle Scholar
  9. Ames FL G (1984) The histidine transport system of Salmonella typhimurium. Microbiology 17A:13–16Google Scholar
  10. Ames FL G (1986) Bacterial periplasmic transport systems: structure, mechanism, and evolution. (in press)Google Scholar
  11. Ames FL G, Nikaido H (1978) Identification of a membrane protein as a histidine transport component in Salmonella typhimurium. Proc Natl Acad Sci USA 75:5447–5451PubMedGoogle Scholar
  12. Ames FL G, Spudich EN (1976) Protein-protein interaction in transport: Periplasmic histidine-binding protein J interacts with P protein. Proc Natl Acad Sci USA 73:1877–1881PubMedGoogle Scholar
  13. Ananthaswany HN (1977) Release of periplasmic enzymes from Escherichia coli by penicillin-ethylenediaminetetraacetate treatment. J Bacteriol 131:710–712Google Scholar
  14. Antonov VK, Alexandrov SL, Vorotyntseva TJ (1976) Reversible association as a possible regulatory mechanism for controlling the activity of the non-specific leucine-binding protein from Escherichia coli. Adv Enzyme Regul 14:269–278PubMedGoogle Scholar
  15. Argast M, Boos W (1979) Purification and properties of the sn-glycerol-3-phosphate-binding protein of Escherichia coli. J Biol Chem 254:10931–10935PubMedGoogle Scholar
  16. Barash H, Halpern YS (1971) Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12. Biochem Biophys Res Commun 45:681–688PubMedGoogle Scholar
  17. Bauer K, Benz R, Brass JM, Boos W (1985) Salmonella typhimurium contains an anion selective outer membrane porin induced by phosphate starvation. J Bacteriol 161:813–816PubMedGoogle Scholar
  18. Bavoil P, Nikaido H (1981) Physical interaction between the phage lambda receptor protein and the carrier-immobilized maltose-binding protein of Escherichia coli. J Biol Chem 256:11385–11388PubMedGoogle Scholar
  19. Bavoil P, Nikaido H, von Meyenburg K (1977) Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet 158:23–33PubMedGoogle Scholar
  20. Bavoil P, Wandersman C, Schwartz M, Nikaido H (1983) A mutant form of maltose-binding protein of Escherichia coli deficient in its interaction with the bacteriophage lamda receptor protein. J Bacteriol 155:919–921PubMedGoogle Scholar
  21. Bayer ME (1979) The fusion sites between outer membrane and cytoplasmic membrane of bacteria: their role in membrane assembly and virus infection. In: Inouye M (ed) Bacterial outer membranes. Wiley, New York, pp 167–202Google Scholar
  22. Bédouelle H, Bassford PJ Jr, Fowler AV, Zabin I, Beckwith J, Hofnung M (1980) Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature 285:78–81PubMedGoogle Scholar
  23. Bédouelle H, Charbit A, Clement JM, Dassa E, Gilson E, Saurin W, Hofnung M (1984) The malB region in Escherichia coli K12: Gene structure and expression. Microbiology 17A:29–32Google Scholar
  24. Benson SA, Decloux A (1985) Isolation and characterization of outer membrane permeability mutants in Escherichia coli K-12. J Bacteriol 161:361–367PubMedGoogle Scholar
  25. Benson SA, Bremer E, Silhavy TJ (1984) Intragenic regions required for LamB export. Proc Natl Acad Sci USA 81:3830–3834PubMedGoogle Scholar
  26. Benson SA, Hall MN, Silhavy TJ (1985) Genetic analysis of protein export in Escherichia coli K-12. Ann Rev Biochem 54:101–134PubMedGoogle Scholar
  27. Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Critical Reviews in Biochemistry 19:145–190PubMedGoogle Scholar
  28. Benz R, Janko K, Boos W, Läuger P (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 511:305–319PubMedGoogle Scholar
  29. Benz R, Darveau RP, Hancock REW (1984) Outer membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid-bilayer membranes. Eur J Biochem 140:319–324PubMedGoogle Scholar
  30. Benz R, Schmid A, Hancock REW (1985) Ion selectivity of Gram-negative bacterial porin. J Bacteriol 162:722–727PubMedGoogle Scholar
  31. Benz R, Schmid A, Nakae T, Vos-Scheperkeuter GH (1986) Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol 165:978–986PubMedGoogle Scholar
  32. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382PubMedGoogle Scholar
  33. Berg HC, Tedesco PM (1975) Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci USA 72:3235–3239PubMedGoogle Scholar
  34. Berger EA (1973) Different mechanisms of energy coupling for the active transport of proline and glutamine in E. coli. Proc Natl Acad Sci USA 70:1514–1518PubMedGoogle Scholar
  35. Berger EA, Heppel LA (1972) A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694PubMedGoogle Scholar
  36. Berger EA, Heppel LA (1974) Different mechanisms of energy coupling for the shock-sensitive and shock-resistent amino acid permeases of Escherichia coli. J Biol Chem 249:7747–7755PubMedGoogle Scholar
  37. Bergmans HEN, van Die JM, Hoekstra WPM (1981) Transformation in Escherichia coli: stages in the process. J Bacteriol 146:564–570PubMedGoogle Scholar
  38. Beveridge TJ (1981) Ultrastructure chemistry and function of the bacterial wall. Int Rev Cytol 72:229–317PubMedGoogle Scholar
  39. Black RA, Hobson AC, Adler J (1980) Involvement of cyclic GMP in intracellular signaling in the chemotactic response of Escherichia coli. Proc Natl Acad Sci USA 77:3879–3883PubMedGoogle Scholar
  40. Blazey DL, Burns RO (1982) Transcriptional activity of the transposable element Tn 10 in the Salmonella ilv GEDA operon. Proc Natl Acad Sci USA 79:5011–5015PubMedGoogle Scholar
  41. Bollinger J, Park C, Harajama S, Hazelbauer GL (1984) Structure of the Trg protein: Homologies with and differences from other sensory transducers of Escherichia coli. Proc Natl Acad Sci USA 81:3287–3291PubMedGoogle Scholar
  42. Boos W (1972) Structurally defective galactose-binding protein isolated from a mutant negative in the β-methylgalactoside transport system of Escherichia coli. J Biol Chem 247:5414–5424PubMedGoogle Scholar
  43. Boos W, Gordon AS, Hall RE, Price HD (1972) Transport properties of the galactose-binding protein of Escherichia coli. J Biol Chem 247:917–924PubMedGoogle Scholar
  44. Boyd A, Krikos A, Simon M (1981) Sensory transducers of Escherichia coli are encoded by homologous genes. Cell 26:333–343PubMedGoogle Scholar
  45. Brass JM (1986) Ca2+-induced permeabilization of the outer membrane: A method for reconstitution of binding protein mediated transport systems in Escherichia coli and Salmonella typhimurium. Meth Enzymol 125:289–302PubMedGoogle Scholar
  46. Brass JM, Manson MD (1984) Reconstitution of maltose Chemotaxis in Escherichia coli by addition of maltose-binding protein to calcium-treated cells of mal-regulon mutants. J Bacteriol 157:881–890PubMedGoogle Scholar
  47. Brass JM, Boos W, Hengge R (1981) Reconstitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane. J Bacteriol 146:10–17PubMedGoogle Scholar
  48. Brass JM, Ehmann U, Bukau B (1983) Reconstitution of maltose transport in Escherichia coli: Conditions affecting import of maltose-binding protein into the periplasm of calcium-treated cells. J Bacteriol 155:97–106PubMedGoogle Scholar
  49. Brass JM, Manson MD, Larson TJ (1984) Transposon Tn 10 dependent expression of the lamB gene in Escherichia coli. J Bacteriol 159:93–99PubMedGoogle Scholar
  50. Brass JM, Bauer K, Ehmann U, Boos W (1985) Maltose-binding protein does not modulate the activity of maltoporin receptor as general porin in Escherichia coli. J Bacteriol 161:720–726PubMedGoogle Scholar
  51. Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 165:787–794PubMedGoogle Scholar
  52. Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377PubMedGoogle Scholar
  53. Braun V (1981) Escherichia coli cells containing the plasmid ColV produce the iron ionophore aerobactin. FEMS Microbiol Lett 11:225–228Google Scholar
  54. Braun V, Hantke K (1981) In: Gosh BK (ed) Organization of prokaryotic cell membranes, Vol II Bacterial cell surface receptors. CRC Press, Boca Raton, pp 1–73Google Scholar
  55. Braun V, Rehn K (1969) Chemical characterization spatial distribution and function of a lipoprotein (murein-lipoprotein) of the Escherichia coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem 10:426–438PubMedGoogle Scholar
  56. Braun V, Rotering H, Ohms JP, Hagenmeier H (1976) Conformational studies on murein lipoprotein from outer membrane of Escherichia coli. Eur J Biochem 70:601–610PubMedGoogle Scholar
  57. Brey RN, Rosen BP (1979) Properties of Escherichia coli mutants altered in calcium/proton antiport activity. J Bacteriol 139:824–834PubMedGoogle Scholar
  58. Brown DA, Berg HC (1974) Temporal stimulation of Chemotaxis in Escherichia coli. Proc Natl Acad Sci USA 71:1388–1392PubMedGoogle Scholar
  59. Bukau B (1986) Ca2+-mediated reconstitution of maltose transport and osmoregulation of maltose gene expression in Escherichia coli. Thesis University of KonstanzGoogle Scholar
  60. Bukau B, Brass JM, Boos W (1985) Ca2+-induced permeabilization of the outer membrane of Escherichia coli: Comparison of transformation and reconstitution of binding-protein dependent transport. J Bacteriol 163:61–68PubMedGoogle Scholar
  61. Bukau B, Ehrmann M, Boos W (1986) Osmoregulation of the maltose regulon in Escherichia coli. J Bacteriol 166:706–712PubMedGoogle Scholar
  62. Burman GL, Reichler J, Park JT (1983) Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase activities. J Bacteriol 156:386–392PubMedGoogle Scholar
  63. Caffrey M, Feigenson GW (1984) Influence of metal ions on the phase properties of phosphatidic acid in combination with natural and synthetic phosphatidylcholines: an X-ray diffraction study using synchroton radiation. Biochemistry 23:323–331PubMedGoogle Scholar
  64. Cerny G, Teuber M (1971) Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by polymyxin B. Arch Microbiol 78:166–179Google Scholar
  65. Chapon C (1982) Role of the catabolite activator protein in the maltose regulon of Escherichia coli. J Bacteriol 150:722–729PubMedGoogle Scholar
  66. Chen R, Schmidmayr W, Krämer C, Chen-Schmeisser U, Henning U (1980) Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12. Proc Natl Acad Sci USA 77:4592–4596PubMedGoogle Scholar
  67. Cherry RJ (1979) Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559:289–327PubMedGoogle Scholar
  68. Ciampi MS, Schmid MB, Roth JR (1982) The transposon Tn 10 provides a promoter for transcription of adjacent sequences. Proc Natl Acad Sci USA 79:5016–5020PubMedGoogle Scholar
  69. Clark AF, Gerken TA, Hogg RW (1982) Proton nuclear magnetic resonance spectroscopy and ligand binding dynamics of Escherichia coli L-arabinose binding protein. Biochemistry 21:2227–2233PubMedGoogle Scholar
  70. Crosa JH (1984) The relationship of plasmid-mediated iron transport and bacterial virulence. Ann Rev Microbiol 38:69–89Google Scholar
  71. Curtis NAC, Richmond HM, Sykes RB (1972) Periplasmic location of a β -lactamase specified either by a plasmid or a chromosomal gene in Escherichia coli. J Bacteriol 112:1433–1434PubMedGoogle Scholar
  72. Dahl MK, Manson MD (1985) Interspecific reconstitution of maltose transport and Chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria. J Bacteriol 164:1057–1063PubMedGoogle Scholar
  73. Darvenau RP, Hancock REW, Benz R (1984) Chemical modification of the anion selectivity of the PhoE porin from the Escherichia coli outer membrane. Biochim Biophys Acta 774:67–74Google Scholar
  74. Date T, Zwizinski C, Ludmerer S, Wickner W (1980) Mechanisms of membrane assembly: effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein. Proc Natl Acad Sci USA 77:827–831PubMedGoogle Scholar
  75. Datta DB, Arden B, Henning U (1977) Major proteins of the Escherichia coli outer envelope membrane as bacteriophage receptors. J Bacteriol 131:821–829PubMedGoogle Scholar
  76. Davies JK, Reeves P (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117PubMedGoogle Scholar
  77. Dawson RMC, Hauser H (1970) Binding of calcium to phospholipids. In: Cuthbert AW (ed) Calcium and cellular function. Macmillan, London, p 17Google Scholar
  78. Débarbouillé M, Shuman HA, Silhavy TJ, Schwartz M (1978) Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. J Mol Biol 124:359–371PubMedGoogle Scholar
  79. Débarbouillé M, Cossart P, Raibaud O (1982) A DNA sequence containing the control sites for gene malT and for the malPQ operon. Mol Gen Genet 185:88–92PubMedGoogle Scholar
  80. Decad GM, Nikaido H (1976) Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J Bacteriol 128:325–336PubMedGoogle Scholar
  81. DePamphilis ML, Adler J (1971) Fine structure and isolation of the hook-basalbody complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 105:384–395PubMedGoogle Scholar
  82. DePedro MA, Schwarz U (1981) Heterogeneity of newly inserted and pre-existing murein in the sacculus of Escherichia coli. Proc Natl Acad Sci USA 78:5856–5860Google Scholar
  83. Dietzel J, Kolb V, Boos W (1978) Pole cap formation in Escherichia coli following induction of the maltose-binding protein. Arch Microbiol 118:207–218PubMedGoogle Scholar
  84. Dills SS, Aperson A, Schmidt MR, Saier MH Jr (1980) Carbohydrate transport in bacterial. Microbiol Rev 44:385–418PubMedGoogle Scholar
  85. DiRienzo MJ, Nakamura K, Inouye M (1978) The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions. Ann Rev Biochem 47:481–532PubMedGoogle Scholar
  86. Dorset DL, Engel A, Massalski A, Rosenbusch JP (1984) Three dimensional structure of a membrane pore. Electron microscopical analysis of Escherichia coli outer membrane matrix porin. Biophys J 45:128–129PubMedGoogle Scholar
  87. Duplay P, Bedouelle H, Fowler AV, Zabin I, Saurin W, Hofnung M (1984) Sequences of the malE gene and of its product the maltose binding protein of Escherichia coli K12. J Biol Chem 259:10606–10613PubMedGoogle Scholar
  88. Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origins of genetic information. Sci Am 244(4): 88–118PubMedGoogle Scholar
  89. Eisenbach M, Adler J (1981) Bacterial cell envelopes with functional flagella. J Biol Chem 256:8807–8814PubMedGoogle Scholar
  90. Eisenbach M, Margolin Y, Ravid S (1985) Sensory transduction in bacterial Chemotaxis. Abstract of the 13th A Katzir-Katchalsky Conference, IsraelGoogle Scholar
  91. Elsbach P, Weiss J (1983) A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytosis. Rev Infect Dis 5:843–853PubMedGoogle Scholar
  92. Emr SD, Bassford JP (1982) Localization and processing of outer membrane and periplasmic proteins in Escherichia coli strains harboring export-specific suppressor mutations. J Biol Chem 257:5852–5860PubMedGoogle Scholar
  93. Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M (1980) Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature 285:82–85PubMedGoogle Scholar
  94. Ferenci T (1980) The recognition of maltodextrins by Escherichia coli. Eur J Biochem 108:631–636PubMedGoogle Scholar
  95. Ferenci T, Boos W (1980) The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. J Supramol Struct 13:101–116PubMedGoogle Scholar
  96. Ferenci T, Boos W, Schwartz M, Szmelcman S (1977) Energy coupling of the transport system of Escherichia coli dependent on maltose binding protein. Eur J Biochem 75:187–193PubMedGoogle Scholar
  97. Fraley R, Wilschut J, Düzgunes N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry 19:6021–6029PubMedGoogle Scholar
  98. Freudl R, Schwarz H, Klose M, Mowa NR, Henning U (1985) The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K12. EMBO J 4:3593–3598PubMedGoogle Scholar
  99. Freundlieb S, Boos W (1986) α-amylase of Escherichia coli, mapping and cloning of the structural gene, mal S, and identification of its product as a periplasmic protein. Biol Chem 261:2946–2954Google Scholar
  100. Froshauer S, Beckwith J (1984) The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259:10896–10903PubMedGoogle Scholar
  101. Furlong CE, Iida A (1984) Ribose transport and reconstitution in Escherichia coli. Microbiology 17A:61–65Google Scholar
  102. Furlong CE, Weiner JH (1970) Purification of a leucine-specific binding protein from Escherichia coli. Biochem Biophys Res Commun 38:1076–1083PubMedGoogle Scholar
  103. Galey WR, Owen JD, Solomon AK (1973) Temperature dependence of nonelectrolyte permeation across red cell membranes. J Gen Physiol 61:727–746PubMedGoogle Scholar
  104. Galloway DR, Furlong CE (1979) Reconstitution of binding protein-dependent ribose transport in spheroplasts of Escherichia coli K12. Arch Biochem Biophys 197:158–162PubMedGoogle Scholar
  105. Gerdes RG, Strickland KP, Rosenberg H (1977) Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J Bacteriol 131:512–518PubMedGoogle Scholar
  106. Gilson E (1983) Thesis. University of ParisGoogle Scholar
  107. Gilson E, Higgins CF, Hofnung M, Ames FLG, Nikaido H (1982) Extensive homology between membrane associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. J Biol Chem 257:9915–9918PubMedGoogle Scholar
  108. Gilson E, Nikaido H, Hofnung M (1982) Sequence of the malK gene in Escherichia coli K12. Nucl Acids Res 10:7449–7458PubMedGoogle Scholar
  109. Glauert AM, Thornley MJ (1969) The topography of the bacterial cell wall. Ann Rev Microbiol 23:159–198Google Scholar
  110. Goy MF, Springer MS, Adler J (1978) Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 15:1231–1240PubMedGoogle Scholar
  111. Griffith TW, Leach FR (1973) The effect of osmotic shock on vitamin transport in Escherichia coli. Arch Biochem Biophys 159:658–663Google Scholar
  112. Grinius L (1980) Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett 113:1–10PubMedGoogle Scholar
  113. Gupte S, Wu E-S, Hoechli L, Hoechli M, Jacobson K, Sowers A, Hackenbrock CR (1984) Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci USA 81:2606–2610PubMedGoogle Scholar
  114. Hall MN, Silhavy TJ (1981) Genetic analysis of the ompB locus in Escherichia coli K12. J Mol Biol 151:1–15PubMedGoogle Scholar
  115. Hall MN, Gabay J, Schwartz M (1983) Evidence for a coupling of synthesis and export of an outer membrane protein in Escherichia coli. EMBO J 2:15–19PubMedGoogle Scholar
  116. Hailing MS, Simons RW, Way CJ, Walsh RB, Kleckner N (1982) DNA sequence organization of IS10-right of Tn 10 and comparison with IS10-left. Proc Natl Acad Sci USA 79:2608–2612Google Scholar
  117. Hancock REW (1984) Alterations in outer membrane permeability. Ann Rev Microbiol 38:237–264Google Scholar
  118. Hardaway KL, Buller CS (1979) Effect of ethylenediaminetetraacetate on phospholipids and outer membrane function in Escherichia coli. J Bacteriol 137:62–68PubMedGoogle Scholar
  119. Hatfield D, Hofnung M, Schwartz M (1969) Nonsense mutations in the maltose A region of the genetic map of Escherichia coli. J Bacteriol 100:1311–1315PubMedGoogle Scholar
  120. Hazelbauer GL (1975 a) The maltose chemoreceptor of Escherichia coli. J Bacteriol 122:206–214PubMedGoogle Scholar
  121. Hazelbauer GL (1975 b) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126PubMedGoogle Scholar
  122. Hazelbauer GL, Adler J (1971) Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose. Nature (London) New Biology 230:101–104Google Scholar
  123. Hazelbauer GL, Harayama S (1983) Sensory transduction in bacterial Chemotaxis. Int Rev Cytol 81:33–70PubMedGoogle Scholar
  124. Hazelbauer GL, Engström P, Harayama S (1981) Methyl-accepting Chemotaxis protein III and transducer gene trg. J Bacteriol 145:43–49PubMedGoogle Scholar
  125. Hedblom ML, Adler J (1980) Genetic and biochemical properties of Escherichia coli mutants with defects in serine Chemotaxis. J Bacteriol 144:1048–1060PubMedGoogle Scholar
  126. Hengge R, Boos W (1983) Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim Biophys Acta 737:443–478PubMedGoogle Scholar
  127. Hengge-Aronis R, Boos W (1986) Translational control of exported proteins. J Bacteriol (in press)Google Scholar
  128. Henning U, Schmidmayr W, Hindennach I (1977) Major proteins of the outer cell envelope membrane of Escherichia coli K-12: multiple species of protein I. Mol Gen Genet 154:293–298PubMedGoogle Scholar
  129. Heuzenroeder WM, Reeves P (1980) Periplasmic maltose-binding protein confers specificity on the outer membrane maltose pore of Escherichia coli. J Bacteriol 141:431–435PubMedGoogle Scholar
  130. Heuzenroeder MW, Reeves P (1981) The tsx protein of Escherichia coli can act as a pore for aminoacids. J Bacteriol 147:1113–1116PubMedGoogle Scholar
  131. Higgins CF (1984) Peptide transport systems of Salmonella typhimurium and Escherichia coli. Microbiology 17 A: 17–20Google Scholar
  132. Higgins CF, Hardie MM (1983) Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli. J Bacteriol 155:1434–1438PubMedGoogle Scholar
  133. Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, Ames FLG (1982) Complete nucleotide sequence and identification of membrane components of the histidine transport operon of Salmonella typhimurium. Nature 298:723–727PubMedGoogle Scholar
  134. Higgins CF, Hiles JD, Whally K, Jamieson DJ (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4:1033–1040PubMedGoogle Scholar
  135. Higgins CF, Sutherland L, Cairney J, Booth IR (1986) The osmotic regulated proU gene of Salmonella typhimurium encodes a periplasmic betaine-binding protein. FEMS Microbiol Lett (in press)Google Scholar
  136. Hindahl MS, Crockford GWK, Hancock REW (1984) Outer membrane protein NmpC of Escherichia coli: pore-forming properties in black lipid bilayers. J Bacteriol 159:1053–1055PubMedGoogle Scholar
  137. Hinz U (1983) Ph.D. Thesis. University of Basel, SwitzerlandGoogle Scholar
  138. Hirota Y, Suzuki H, Nishimura Y, Yasuda S (1977) On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. Proc Natl Acad Sci USA 74:1417–1420PubMedGoogle Scholar
  139. Hiruma R, Yamaguchi A, Sawai T (1984) The effect of lipopolysaccharide on lipid bilayer permeability of β-lactam antibiotics. FEBS Lett 170:268–272PubMedGoogle Scholar
  140. Hobot JA, Carleman E, Villiger W, Kellenberg E (1984) Periplasmic gel: new concept resulting from reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160:143–152PubMedGoogle Scholar
  141. Hoekstra D, Wilschut J, Scherphof G (1983) Kinetics of calcium phosphate-induced fusion of human erythrocyte ghosts monitored by mixing of aqueous contents. Biochim Biophys Acta 732:327–331PubMedGoogle Scholar
  142. Hoekstra D, Wilschut J, Scherphof G (1985) Fusion of erythrocyte ghosts induced by calcium phosphate. Eur J Biochem 146:131–140PubMedGoogle Scholar
  143. Hofnung M (1974) Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. Genetics 76:169–184PubMedGoogle Scholar
  144. Hofnung M (1982) (ed) The maltose system as a tool in molecular biology. Ann Microbiol (Inst Pasteur) 133 A: 5–273Google Scholar
  145. Hofnung M, Schwartz M, Hatfield D (1971) Complementation studies in the maltose-A region of the Escherichia coli K12 genetic map. J Mol Biol 61:681–694PubMedGoogle Scholar
  146. Hofnung M, Hatfield D, Schwartz M (1974) malB region in Escherichia coli K12: characterization of new mutations. J Bacteriol 117:40–47PubMedGoogle Scholar
  147. Hogg RW (1981) The amino acid sequence of the histidine binding protein of Salmonella typhimurium. J Biol Chem 256:1935–1939PubMedGoogle Scholar
  148. Homma T, Nakae T (1982) Effects of cations on the outer membrane permeability of Escherichia coli. Tokai Exp Clin Med 7:171–175Google Scholar
  149. Hunt AG, Hong JS (1981) The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli. J Biol Chem 256:11988–11991PubMedGoogle Scholar
  150. Hunt AG, Hong JS (1983) Involvement of histidine and tryptophan residues of glutamine binding protein in the interaction with membrane-bound components of the glutamine transport system of Escherichia coli. Biochemistry 2:844–850Google Scholar
  151. Ichihara S, Mizushima S (1979) Arrangement of proteins 0–8 and 0–9 in outer membrane of Escherichia coli. Eur J Biochem 100:321–328PubMedGoogle Scholar
  152. Inouye M (1982) In: Martonosi (ed) Membranes and transport, vol 1, Lipoproteins from the bacterial outer membranes. Plenum, New York, pp 289–297Google Scholar
  153. Irbe R, Oishi M (1980) Prophage induction in a permeabilized cell system: induction by deoxyribonu-cleases and the role of recBC — deoxyribonuclease. J Bacteriol 144:1061–1067PubMedGoogle Scholar
  154. Ishihara H, Hogg RW (1980) Amino acid sequence of the sulfate-binding protein from Salmonella typhimurium LT2. J Biol Chem 255:4616–4618Google Scholar
  155. Janoff AS, Gupte S, McGroarty EJ (1980) Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12. Biochim Biophys Acta 598:641–644PubMedGoogle Scholar
  156. Josefsson LG, Randall LL (1981) Different exported proteins in Escherichia coli show differences in the temporal mode of processing in vivo. Cell 25:151–157PubMedGoogle Scholar
  157. Kadner RJ, Liggins GL (1973) Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol 115:514–521PubMedGoogle Scholar
  158. Kawaji H, Mizuno T, Mizushima S (1979) Influence of molecular size and osmolality of sugars and dextrans on the synthesis of outer membrane proteins 0–8 and 0–9 of Escherichia coli K12. J Bacteriol 140:843–847PubMedGoogle Scholar
  159. Kayalar C, Erdheim GR, Shanfelt A, Goldman K (1984) Colicin channels and cellular immunity. Curr Topics Cell Reg 24:301–312Google Scholar
  160. Kell DB (1984) Diffusion of proteins in procaryotic membranes: fast, free, random or directed? TIBS 3:86–87Google Scholar
  161. Kellermann O, Szmelcman S (1974) Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose binding protein. Eur J Biochem 47:139–149PubMedGoogle Scholar
  162. Kleckner N (1983) In: Shapiro I (ed) Mobile genetic elements. Transposon Tn10. Academic, New York, pp 261–298Google Scholar
  163. Koch AL (1985) Bacterial growth and division or life without actin. TIBS 1:11–14Google Scholar
  164. Koiwai O, Hayashi H (1979) Studies on bacterial Chemotaxis. VI. Interaction of maltose receptor with membrane bound chemosensing component. J Biochem 86:27–34PubMedGoogle Scholar
  165. Kondoh H, Ball CB, Adler J (1979) Identification of a methylaccepting Chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76:260–264PubMedGoogle Scholar
  166. Kort EN, Goy MF, Larsen SH, Adler J (1975) Methylation of a membrane protein involved in bacterial Chemotaxis. Proc Natl Acad Sci USA 72:3939–3943PubMedGoogle Scholar
  167. Krikos A, Mutoh N, Boyd A, Simon MJ (1983) Sensory transducers of Escherichia coli are composed of discrete structural and functional domains. Cell 33:615–622PubMedGoogle Scholar
  168. Labischinski H, Johannsen L (1986) In: Seidl HP, Schleifer KH (eds) Biological properties of peptidoglycan. de Gryter, Berlin (in press)Google Scholar
  169. Langridge R, Shinagawa H, Pardee AB (1970) Sulfate-binding protein from Salmonella typhimurium: physical properties. Science 169:59–61PubMedGoogle Scholar
  170. Larsen SH, Adler J, Gargus JJ, Hogg RW (1974 a) Chemomechanical coupling without ATP: the source of energy for motility and Chemotaxis in bacteria. Proc Natl Acad Sci USA 71:1239–1243PubMedGoogle Scholar
  171. Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974b) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 249:74–77Google Scholar
  172. Larson TJ, Ehrmann M, Boos W (1982) Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Bacteriol 258:5428–5432Google Scholar
  173. Leive L (1965) Release of lipopolysaccharide by EDTA treatment of Escherichia coli. Biochem Biophys Res Commun 21:290–296PubMedGoogle Scholar
  174. Leive L (1974) The barrier function of the gram-negative envelope. Ann NY Acad Sci 235:109–127PubMedGoogle Scholar
  175. Leive L, Kollin V (1967) Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes. Biochem Biophys Res Commun 28:229–236PubMedGoogle Scholar
  176. Lengeier J, Auburger AJ, Mayer R, Pecher A (1981) The phosphoenolpyruvate dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in Chemotaxis of Escherichia coli K12. Mol Gen Genet 183:163–170Google Scholar
  177. Lever JE (1972) Purification and properties of a component of histidine transport in Salmonella typhimurium. J Biol Chem 247:4317–4326PubMedGoogle Scholar
  178. Lo CY, Sanwal BD (1975) Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. J Biol Chem 250:1600–1602PubMedGoogle Scholar
  179. Lounatmaa K, Mäkelä PH, Sarvas M (1976) The effect of polymyxin on the outer membrane of Salmonella: ultrastructure of wild-type and polymyxin-resistant strains. J Bacteriol 127:1900–1907Google Scholar
  180. Luckey M, Nikaido H (1980a) Specificity of diffusion channels produced by lambda phage receptor protein ofEscherichia coli. Proc Natl Acad Sci USA 77:167–171PubMedGoogle Scholar
  181. Luckey M, Nikaido H (1980b) Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. Biochem Biophys Res Commun 93:166–171PubMedGoogle Scholar
  182. Lugtenberg B (1981) Composition and function of the outer membrane of Escherichia coli. TIBS 10:262–266Google Scholar
  183. Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737:51–115PubMedGoogle Scholar
  184. Lugtenberg EJJ, Peters R (1976) Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta 441:38–47PubMedGoogle Scholar
  185. MacAlister TJ, MacDonald B, Rothfield LI (1983) The periseptal annulus: an organelle associated with cell division in gram-negative bacteria. Proc Natl Acad Sci USA 80:1372–1376PubMedGoogle Scholar
  186. Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial Chemotaxis. Proc Natl Acad Sci USA 69:2509–2512PubMedGoogle Scholar
  187. Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162PubMedGoogle Scholar
  188. Manderslot JG, Gerritsen WJ, Lennissen-Bijrett J, van Echteld CJA, Nordam PC, De Gier J (1981) Biochim Biophys Acta 646:106–113Google Scholar
  189. Maness ML, Sparling PF (1973) Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoea. J Infect Dis 128:321–330PubMedGoogle Scholar
  190. Manson MD, Kossmann M (1986) Mutations in tar suppress defects in maltose Chemotaxis caused by specific malE mutations. J Bacteriol 165:34–40PubMedGoogle Scholar
  191. Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C (1977) A protonmotive force drives bacteria flagella. Proc Natl Acad Sci USA 74:3060–3064PubMedGoogle Scholar
  192. Manson MD, Boos W, Bassford PJ, Rasmussen BA (1985) Dependence of maltose transport and Chemotaxis on the amount of maltose-binding protein. J Biol Chem 260:9727–9733PubMedGoogle Scholar
  193. Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide Chemotaxis in Escherichia coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256PubMedGoogle Scholar
  194. Mao B, McCommon JA (1983) Theoretical study of hinge bending in L-arabinose-binding protein. J Biol Chem 258:12543–12547PubMedGoogle Scholar
  195. Matsumara P, Bartlett D, Stader J, Vacante D, Rydel J, MacNally D, Malakooti J, Beman J (1985) Architecture and interactions of the bacterial Chemotaxis machinery. Abstr. of the 13. A Katzir-Katchalsky Conference, IsraelGoogle Scholar
  196. May G, Faatz E, Villarejo M, Bremer E (1986) Binding-protein-dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K-12. Molec Gen Genet (in press)Google Scholar
  197. McCloskey M, Poo MM (1984) Protein diffusion in cell membranes: some biological implications. Int Rev Cytol 87:19–81PubMedGoogle Scholar
  198. Meador WE, Quiocho FA (1978) Preliminary crystallographic data for a leucine, isoleucine, valine-binding protein from Escherichia coli K12. J Mol Biol 123:499–502PubMedGoogle Scholar
  199. Medveczky N, Rosenberg H (1970) The phosphate-binding protein of Escherichia coli. Biochim Biophys Acta 211:158–168Google Scholar
  200. Melchior DL, Steim JM (1976) Thermotropic transitions in biomembranes. Ann Rev Biophys Bioeng 6:205–238Google Scholar
  201. Michaelis S, Beckwith J (1982) Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu Rev Microbiol 36:435–465PubMedGoogle Scholar
  202. Miller III DM, Olson JS, Pflugrath JW, Quiocho FA (1983) Rates of ligand binding to periplasmic proteins involved in bacterial transport and Chemotaxis. J Biol Chem 258:13665–13672PubMedGoogle Scholar
  203. Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970PubMedGoogle Scholar
  204. Mizuno T, Mutoh N, Panasenko SM, Imae Y (1986) Acqusition of maltose Chemotaxis in Salmonella typhimurium by the introduction of the Escherichia coli chemosensory transducer gene. J Bacteriol 165:890–895PubMedGoogle Scholar
  205. Monod J, Torriani AM (1950) De l’amylomaltase d’Escherichia coli. Ann Inst Pasteur 78:65–77Google Scholar
  206. Mowbray SL, Petsko GA (1982 a) Preliminary X-ray data for the ribose-binding protein from Salmonella typhimurium. J Mol Biol 160:545–547PubMedGoogle Scholar
  207. Mowbray SL, Petsko GA (1982b) The X-ray structure of the periplasmic galactose binding protein from Salmonella typhimurium at 3.0 Å resolution. J Biol Chem 258:7991–7997Google Scholar
  208. Mowbray SL, Foster DL, Koshland DE (1985) Proteolytic fragments identified with domains of the aspartate chemoreceptor. J Biol Chem 260:11711–11718PubMedGoogle Scholar
  209. Murphy DI, Woodrow IG (1983) Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and its implications for molecular organization of photosynthetic membranes. Biochim Biophys Acta 725:104–112Google Scholar
  210. Mutoh N, Simon M (1986) Nucleotide sequence corresponding to five Chemotaxis genes in Escherichia coli. J Bacteriol 165:161–166PubMedGoogle Scholar
  211. Nakae T (1975) Outer membrane of Salmonella typhimurium: reconstitution of sucrose-permeable membrane vesicles. Biochem Biophys Res Commun 64:1224–1230PubMedGoogle Scholar
  212. Nakae T (1976) Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J Biol Chem 251:2176–2178PubMedGoogle Scholar
  213. Nakae T, Ishii J (1980) Permeability properties of Escherichia coli outer membrane containing pore-forming proteins: comparison between lambda receptor protein and porin for saccharide permeation. J Bacteriol 142:735–740PubMedGoogle Scholar
  214. Nakae T, Nikaido H (1975) Outer membrane as a diffusion barrier in Salmonella typhimurium. Penetration of oligo- and polysaccharides into isolated outer membrane vesicles and cells with degraded peptidoglycan layer. J Biol Chem 250:7359–7365PubMedGoogle Scholar
  215. Nakae T, Ishii J, Tokunaga M (1979) Subunit structure of functional porin oligomers that form permeability channels in the outer membrane of Escherichia coli. J Biol Chem 254:1457–1461PubMedGoogle Scholar
  216. Neilands JB (1982) Microbial envelope proteins related to iron. Ann Rev Microbiol 36:285–309Google Scholar
  217. Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692PubMedGoogle Scholar
  218. Neuhaus J-M, Schindler H, Rosenbusch J (1983) The periplasmic maltose-binding protein modifies the channel-forming characteristics of maltoporin. EMBO J 2:1987–1991PubMedGoogle Scholar
  219. Nikaido H (1976) Outer membrane of Salmonella typhimurium transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433:118–132PubMedGoogle Scholar
  220. Nikaido H (1983) Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. Meth Enzymol 97:85–100PubMedGoogle Scholar
  221. Nikaido H, Nakae T (1979) The outer membrane of Gram-negative bacteria. Adv Microb Physiol 20:163–250PubMedGoogle Scholar
  222. Nikaido H, Rosenberg EY (1981) Effect of solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J Gen Physiol 77:121–135PubMedGoogle Scholar
  223. Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252PubMedGoogle Scholar
  224. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32PubMedGoogle Scholar
  225. Nikaido H, Wu H (1984) Amino acid sequence homology among the major outer membrane proteins of Escherichia coli. Proc Natl Acad Sci USA 81:1048–1052PubMedGoogle Scholar
  226. Nikaido H, Takeuchi Y, Ohnishi S, Nakae T (1977) Outer membrane of Salmonella typhimurium. Electron spin resonance studies. Biochim Biophys Acta 465:152–164PubMedGoogle Scholar
  227. Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with β -lactams in intact cells. J Bacteriol 153:232–240PubMedGoogle Scholar
  228. Niwano M, Taylor BL (1982) Novel sensory adaptation mechanism in bacterial Chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci USA 79:11–15PubMedGoogle Scholar
  229. Nossal NG, Heppel LA (1966) The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062PubMedGoogle Scholar
  230. Ohnishi S, Ito T (1974) Calcium-induced phase separation in phosphatidylserine-phosphatidylcholine membranes. Biochemistry 13:881–887Google Scholar
  231. Ordal GW (1977) Calcium ion regulates chemotactic behaviour in bacteria. Nature 270:66–67PubMedGoogle Scholar
  232. Overbeeke N, van Scharrenburg G, Lugtenberg B (1980) Antigenic relationships between pore proteins of Escherichia coli K12. Eur J Biochem 110:247–254PubMedGoogle Scholar
  233. Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Janofsky C (1980) Structural and functional analysis of cloned DNA containing genes responsible for branched chain amino acid transport in E. coli. Proc Natl Acad Sci USA 77:1412–1416PubMedGoogle Scholar
  234. Palm D, Goerl R, Burger KJ (1985) Evolution of catalytic and regulatory sites in phosphorylases. Nature (London) 313:500–502Google Scholar
  235. Palmer TN, Ryman BE, Whelan WJ (1976) The action pattern of amylomaltase from Escherichia coli. Eur J Biochem 69:105–115PubMedGoogle Scholar
  236. Pardee AB, Prestidge LS, Whipple MB, Dreyfuss J (1966) A binding site for sulphate and sulfate transport into Salmonella typhimurium. J Biol Chem 241:3962–3969PubMedGoogle Scholar
  237. Parkinson JS, Hazelbauer GL (1983) In: Beckwith J, Davies J, Gallant JA (eds) Gene function in procaryotes. Cold Spring Harbor Laboratories, Cold Spring Harbor New York, pp 293–318Google Scholar
  238. Parsons RG, Hogg RW (1974) Crystallization and characterization of the L-arabinose binding protein of Escherichia coli B/r. J Biol Chem 249:3602–3607PubMedGoogle Scholar
  239. Penrose WP, Nochoalds GE, Piperno JR, Oxender DL (1968) Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem 243:5921–5928PubMedGoogle Scholar
  240. Perlman RL, Pastan I (1969) Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase-deficient mutant of Escherichia coli. Biochem Biophys Res Commun 37:151–157PubMedGoogle Scholar
  241. Peterkofsky A, Gazdar C (1974) Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci USA 71:2324–2328PubMedGoogle Scholar
  242. Peterson AA, Hancock REW, McGroarty EJ (1985) Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol 164:1256–1261PubMedGoogle Scholar
  243. Postma PW (1981) Defective enzyme II-BGlc of the phosphoenolpyruvate: sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J Bacteriol 147:382–389PubMedGoogle Scholar
  244. Pugsley AP, Schnaitman CA (1978) Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli. J Bacteriol 135:1118–1129PubMedGoogle Scholar
  245. Quiocho FA, Gilliland GL, Philips GN Jr (1977) The 2.8 Å resolution of the L-arabinoses-binding protein from Escherichia coli. J Biol Chem 252:5142–5149PubMedGoogle Scholar
  246. Quiocho FA, Meador WE, Pflugrath JW (1979) Preliminary chrystallographic data of receptors for transport and Chemotaxis in Escherichia coli: D-galactose and maltose-binding proteins. J Mol Biol 133:181–184PubMedGoogle Scholar
  247. Rae AS, Strickland KP, Medveczky N, Rosenberg H (1976) Studies of phosphate transport in Escherichia coli. I. Reexamination of the effect of osmotic shock and cold shock on phosphate uptake and some attempts to restore uptake with phosphate binding protein. Biochim Biophys Acta 433:555–563PubMedGoogle Scholar
  248. Raibaud O, Roa M, Braun-Breton C, Schwartz M (1979) Structure of the malB region in Escherichia coli K12. I. Genetic map of the malK-lamB Operon. Mol Gen Genet 174:241–248PubMedGoogle Scholar
  249. Raibaud O, Gutierrez C, Schwartz M (1985) Essential and non essential sequences in malPp, a positively controlled promoter in Escherichia coli. J Bacteriol 161:1201–1208PubMedGoogle Scholar
  250. Rasched J, Shuman HA, Boos W (1976) The dimer of the E. coli galactose-binding protein. Eur J Biochem 69:545–550Google Scholar
  251. Reader RW, Tso WW, Springer MS, Goy MF, Adler J (1979) Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli. J Gen Microbiol 111:363–374PubMedGoogle Scholar
  252. Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243PubMedGoogle Scholar
  253. Repaske R (1958) Lysis of Gram-negative organisms and the role of Versene. Biochem Biophys Acta 30:225–232PubMedGoogle Scholar
  254. Richarme G (1982 a) Interaction of the maltose-binding protein with membrane vesicles of Escherichia coli. J Bacteriol 149:662–667PubMedGoogle Scholar
  255. Richarme G (1982 b) Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein. Biochem Biophys Res Commun 105:476–481PubMedGoogle Scholar
  256. Rick PD, Neumeyer BA, Young DA (1983) Effect of altered lipid A synthesis on the synthesis of the OmpA protein in Salmonella typhimurium. J Biol Chem 258:629–635PubMedGoogle Scholar
  257. Ritschel ET, Gottert H, Lüderitz O, Westphal O (1972) Nature and linkages of fatty acids present in the lipid A component of Salmonella lipopolysaccharides. Eur J Biochem 28:166–173Google Scholar
  258. Roantree RJ, Kuo T-T, MacPhee DG (1977) The effect of defined lipopolysaccharide core defects upon antibiotic resistance of Salmonella typhimurium. J Gen Microbiol 103:223–234PubMedGoogle Scholar
  259. Robb FT, Furlong CE (1980) Reconstitution of binding protein dependent ribose transport in spheroblasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium. J Supramol Struct 13:183–190PubMedGoogle Scholar
  260. Rodrigez-Tebar A, Barbas J, Vasquez D (1985) Location of some proteins involved in peptidoglycan synthesis and cell division in the inner and outer membranes of Escherichia coli. J Bacteriol 161:243–248Google Scholar
  261. Robertson DE, Kroon PA, Ho C (1977) Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry 16:1443–1451PubMedGoogle Scholar
  262. Rosen BP (1971) Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662PubMedGoogle Scholar
  263. Rosen BP (1973) Basic amino acid transport in Escherichia coli. J Biol Chem 248:1211–1218PubMedGoogle Scholar
  264. Rosenbusch JP (1974) Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecylsulfate binding. J Biol Chem 249:8019–8029PubMedGoogle Scholar
  265. Rothfield LI, MacAlister TJ, Cook WR (1986) Murein-membrane interactions in cell division. In: Inouye M (ed.) Bacterial outer membranes as model systems. Wiley, New York, in pressGoogle Scholar
  266. Rotman B, Guzman R (1984) Galactose-binding protein-dependent transport in reconstituted membrane vesicles of Escherichia coli. Microbiology 17 A: 57–60Google Scholar
  267. Ryter A, Shuman H, Schwartz M (1975) Integration of the receptor for bacteriophage lambda in the outer membrane of Escherichia coli: coupling with cell division. J Bacteriol 122:295–301PubMedGoogle Scholar
  268. Sabelnikov AG, Domaradsky JV (1981) Effect of metabolic inhibitors on entry of exogenous deoxyribonucleic acid into Ca2+-treated Escherichia coli cells. J Bacteriol 146:435–443PubMedGoogle Scholar
  269. Sabelnikov AG, Ilyashenko BN, Chupin W, Vasilenko IA (1985) The in vivo formation of nonbilayer lipid phase in E. coli membranes during development of Ca2+-dependent competence. Biochem Biophys Res Commun 2:464–472Google Scholar
  270. Sahl H-G (1985) Bactericidal cationic peptides involved in bacterial antagonism and host defense. Microbial Sci 2:212–217Google Scholar
  271. Saper MA, Quiocho FA (1983) Leucine-isoleucine-valine-binding protein from Escherichia coli. Structure at 3.0 Å resolution and location of the binding site. J Biol Chem 258:11057–11062PubMedGoogle Scholar
  272. Schindler M, Osborn MJ (1979) Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18:4425–4430PubMedGoogle Scholar
  273. Schindler H, Rosenbusch JP (1978) Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci USA 75:3751–3755PubMedGoogle Scholar
  274. Schindler M, Osborn MJ, Koppel D (1980) Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature (London) 285:261–263Google Scholar
  275. Schleifer KH, Stackebrandt E (1983) Molecular systematics in procaryotes. Ann Rev Microbiol 37:143–187Google Scholar
  276. Schulman H, Kennedy EP (1979) Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. J Bacteriol 137:686–688PubMedGoogle Scholar
  277. Schwartz D, Beckwith JR (1970) Mutants missing a factor necessary for the expression of catabolite- sensitive operons in Escherichia coli. In: Beckwith JR, Zipser D (eds) The lactose Operon. Cold Spring Harbor Laboratories, New York, pp 417–422Google Scholar
  278. Schwartz M (1967) Expression phenotypique et localisation genetique de mutations affectant le metabolisme du maltose chez Escherichia coli. Ann Inst Pasteur 112:673–701Google Scholar
  279. Schwartz M (1986) In: Neidhart FC, Ingraham IL, Low KB, Magasanik B, Shaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. ASM Publications Washington DC (in press)Google Scholar
  280. Schwartz M, Le Minor L (1975) Occurence of the bacteriophage lambda receptor in some enterobac-teriaceae. J Virol 15:679–685PubMedGoogle Scholar
  281. Schwartz M, Kellermann O, Szmelcman S, Hazelbauer GL (1976) Further studies on the binding of maltose with the maltose-binding protein of E. coli. Eur J Biochem 71:167–170PubMedGoogle Scholar
  282. Schwartz M, Roa M, Débarbouillé M (1981) Mutations that affect lamB gene expression at a post-transcriptional level. Proc Natl Acad Sci USA 78:2937–2941PubMedGoogle Scholar
  283. Schweizer M, Schwarz H, Sonntag I, Henning U (1976) Mutational change of membrane architecture. Mutants of Escherichia coli K12 missing major proteins of the outer cell envelope membrane. Biochim Biophys Acta 448:474–491PubMedGoogle Scholar
  284. Segall JE, Manson MD, Berg HC (1982) Signal processing times in bacterial Chemotaxis. Nature (London) 296:855–857Google Scholar
  285. Segall JE, Ishihara A, Berg H (1985) Chemotactic signaling in filamentous cells of Escherichia coli. J Bacteriol 161:51–59PubMedGoogle Scholar
  286. Shuman H (1982) Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose binding protein and evidence of a substrate recognition site in the cytoplasmic membrane. J Biol Chem 257:5455–5461PubMedGoogle Scholar
  287. Shuman HA, Silhavy TJ (1981) Identification of the malK gene product, a peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem 256:560–562PubMedGoogle Scholar
  288. Shuman HA, Silhavy TJ, Beckwith JR (1980) Labeling proteins with β-galactosidase by gene fusion. J Biol Chem 255:168–174PubMedGoogle Scholar
  289. Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691PubMedGoogle Scholar
  290. Singh AP, Bragg PD (1977) Energetics of galactose, proline, and glutamine transport in a cytochrome deficient mutant of Salmonella typhimurium. J Supramol Struct 6:389–398PubMedGoogle Scholar
  291. Singh AP, Bragg PD (1979) The action of tributylin chloride on the uptake of proline and glutamine by intact cells of Escherichia coli. Can J Biochem 57:1376–1383PubMedGoogle Scholar
  292. Smit J, Nikaido H (1978) Outer membrane of Gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium. J Bacteriol 135:687–702PubMedGoogle Scholar
  293. Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J Bacteriol 124:942–958PubMedGoogle Scholar
  294. Socca JJ, Pland RL, Zoon KC (1974) Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J Bacteriol 118:369–373Google Scholar
  295. Soltyk A, Slugar D, Picchowska M (1975) Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J Bacteriol 124:1429–1438PubMedGoogle Scholar
  296. Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136:280–285PubMedGoogle Scholar
  297. Springer MS, Goy MF, Adler J (1977) Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc Natl Acad Sci USA 74:3312–3316PubMedGoogle Scholar
  298. Spudich JL, Koshland DE Jr (1975) Quantitation of the sensory response in bacterial Chemotaxis. Proc Natl Acad Sci USA 72:710–713PubMedGoogle Scholar
  299. Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861PubMedGoogle Scholar
  300. Strain SM, Fesik SW, Armitage IM (1983) Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by C-13 and P-31 nuclear magnetic resonance. J Biol Chem 258:13466–13477PubMedGoogle Scholar
  301. Strauch KL, Kumamoto CA, Beckwith J (1986) Does SecA mediate coupling between secretion and translation in Escherichia coli? J Bacteriol 166:505–512PubMedGoogle Scholar
  302. Sweet GD (1983) Tricarboxylate transport proteins of Salmonella typhimurium. Ph D Thesis, University of Victoria, CanadaGoogle Scholar
  303. Sweet GD, Kay CM, Kay WW (1984) Tricarboxylate-binding proteins of Salmonella typhimurium, purification, crystallization, and physical properties. J Biol Chem 259:1586–1592PubMedGoogle Scholar
  304. Szmelcman S, Adler J (1976) Change in membrane potential during bacterial Chemotaxis. Proc Natl Acad Sci USA 73:4387–4391PubMedGoogle Scholar
  305. Szmelcman S, Hofnung M (1975) Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol 124:112–118PubMedGoogle Scholar
  306. Szmelcman S, Schwartz M, Silhavy TJ, Boos W (1976) Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants with the dissociation constants of the maltose binding protein as measured by fluorescence quenching. Eur J Biochem 65:13–19PubMedGoogle Scholar
  307. Taketo A (1974) Sensitivity of Escherichia coli to viral nucleic acid. VIII. Idiosyncrasy of Ca2+- dependent competence of DNA. J Biochem 75:895–904PubMedGoogle Scholar
  308. Taketo A (1975) Sensitivity of Escherichia coli to viral nucleic acid. X. Ba2+ induced competence for transfecting DNA. Z Naturforsch 30 b: 520–522Google Scholar
  309. Taketo A (1977) Sensitivity of Escherichia coli to viral nucleic acid. XII. Ca2+- or Ba2+-facilitated transfection of cell envelope mutants. Z Naturforsch 32c:.429–433Google Scholar
  310. Takeuchi Y, Nikaido H (1981) Persistence of segregated phospholipid domains in phospholipid-lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry 20:523–529PubMedGoogle Scholar
  311. Thieme R, Lay H, Oser A, Lehmann J, Wrissenberg S, Boos W (1986) 3-Azi-1-methoxybutyl-D-maltooligosaccharides specifically bind to the maltose/maltooligosaccharide-binding protein of Escherichia coli and can be used as photoaffinity labels. Eur J Biochem (in press)Google Scholar
  312. Tilby M, Hindennach J, Henning U (1978) Bypass of receptor-mediated resistance of colicin E3 in Escherichia coli K12. J Bacteriol 136:1189–1191PubMedGoogle Scholar
  313. Tomoeda M, Innzuka M, Kubo N, Nakamura S (1968) Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. J Bacteriol 95:1078–1089PubMedGoogle Scholar
  314. Treptow NA, Shuman HA (1985) Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol 163:654–660PubMedGoogle Scholar
  315. Vaara M (1981) Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J Bacteriol 148:426–434PubMedGoogle Scholar
  316. Vaara M, Vaara T (1981) Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother 19:578–583PubMedGoogle Scholar
  317. Vaara M, Vaara T (1983) Polycations sensitizes enteric bacteria to antibiotics. Antimicrob Agents Chemother 24:107–113PubMedGoogle Scholar
  318. Vaara M, Vaara T, Jensen M, Helander I, Nurminen M, Rietschel ET, Mäkelä PH (1981) Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett 129:145–149PubMedGoogle Scholar
  319. van Alphen L, Lugtenberg B, van Boxtel R, Verhoef K (1977) Architecture of the outer membrane of Escherichia coli. K12: I Action of phospholipases A2 and C on wild-type strains and outer membrane mutants. Biochim Biophys Acta 466:257–268PubMedGoogle Scholar
  320. van Die JM, Bergmans HEN, Hoekstra WPM (1983) Transformation in Escherichia coli: Studies on the role of the heat shock in induction of competence. J Gen Microbiol 129:663–670PubMedGoogle Scholar
  321. van Golde IM, Shulmann GH, Kennedy EP (1973) Metabolism of membrane lipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 70:1368–1372PubMedGoogle Scholar
  322. Verkleij AJ (1984) Lipid intramembraneous particles. Biochim Biophys Acta 779:43–63PubMedGoogle Scholar
  323. von Meyenburg K (1971) Transport-limited growth rates in a mutant of Escherichia coli. J Bacteriol 107:878–888Google Scholar
  324. Vos-Scheperkeuter GH, Witholt B (1984) Assembly pathway of newly synthesized LamB protein, an outer membrane protein of Escherichia coli K-12. J Mol Biol 175:511–528PubMedGoogle Scholar
  325. Vos-Scheperkeuter GH, Pas E, Brakenhoff GJ, Nanninga N, Witholt B (1984) Topography of insertion of LamB protein into the outer membrane of Escherichia coli wild-type and lac-lamB cells. J Bacteriol 159:440–447PubMedGoogle Scholar
  326. Walter P, Blobel G (1982) Signal recognition particle contains a 7S PNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698PubMedGoogle Scholar
  327. Wandersman C, Schwartz M, Ferenci T (1979) Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol 140:1–13PubMedGoogle Scholar
  328. Wang EA, Koshland DE Jr (1980) Receptor structure in the bacterial sensing system. Proc Natl Acad Sci USA 77:7157–7161PubMedGoogle Scholar
  329. Weigand RA, Vinci KD, Rothfield LJ (1976) Morphogenesis of the bacterial division septum: a new class of septation-defective mutants. Proc Natl Acad Sci USA 73:1882–1886PubMedGoogle Scholar
  330. Weiner JH, Heppel LA (1971) A binding protein for glutamine and its relation to active transport in E. coli. J Biol Chem 246:6933–6941Google Scholar
  331. Weston A, Brown MGM, Perkins HR, Saunders JR, Humphreys GO (1981) Transformation of Escherichia coli with plasmid deoxyribonucleic acid: Calcium-induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. J Bacteriol 145:780–787PubMedGoogle Scholar
  332. Westphal O, Lüderitz O (1954) Chemische Erforschung von Lipopolysacchariden gram-negativer Bakterien. Ang Chemie 66:407–417Google Scholar
  333. Wetzel BK, Spicer SS, Dvorak HF, Heppel LA (1970) Cytochemical localization of certain phosphatases in Escherichia coli. J Bacteriol 104:529–542PubMedGoogle Scholar
  334. Willis RC, Furlong CE (1974) Purification and properties of a ribose-binding protein from Escherichia coli. J Bacteriol 249:6926–6929Google Scholar
  335. Willis RC, Furlong CE (1975) Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coli K12 strain W3092. J Bacteriol 250:2574–258Google Scholar
  336. Woese CR (1981) Archaebacteria. Sci Am 244(6): 98–122Google Scholar
  337. Young JG, Rogers BL, Campbell HD, Jaworowski A, Shaw DC (1981) Nucleotide sequence coding for the respiratory NADH-dehydrogenase of E. coli. Eur J Biochem 116:165–170PubMedGoogle Scholar
  338. Zukin RS, Strange PG, Heavey LR, Koshland DE Jr (1977) Properties of the galactose-binding protein of S. typhimurium and E. coli. Biochemistry 16:381–386PubMedGoogle Scholar
  339. Zukin RS, Hartig PR, Koshland DE Jr (1979) Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules. Biochemistry 18:5599–5605PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • J. M. Brass
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations