Skip to main content

Neural Tissue Transplants Modify Response of the Immature Spinal Cord to Damage

  • Conference paper
Book cover Glial-Neuronal Communication in Development and Regeneration

Part of the book series: NATO ASI Series ((ASIH,volume 2))

  • 91 Accesses

Abstract

Neural tissue transplantation techniques have been used extensively in recent years to examine questions concerning development and regeneration in the developing and mature central nervous system (see 1,2,3, for reviews). For example, transplants derived from various levels of the neuraxis survive, grow, and differentiate when placed into cavities or lesions in the adult or newborn nervous system (4–13). Often anatomical projections between host and transplant tissue are established. In some instances, the transplants are able to mediate recovery of function after CNS lesions either by establishing axonal connections with the host nervous system or by releasing hormones or neurotransmitters which are able to act on neurons within the host (3, 7, 14-19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorklund, A. and Stenevi, U. (1984). Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.

    Article  PubMed  CAS  Google Scholar 

  2. Bjorklund, A. and Stenevi, U. (1985). Neural Grafting in the Mammalian CNS. Elsevier, Amsterdam.

    Google Scholar 

  3. Sladek, J. R. and Gash,D. M. (1984). Neural Transplants: Development and function, J. R. Sladek, Jr. and D. M. Gash, eds, Plenum Press, New York.

    Google Scholar 

  4. Bjorklund, A. and Stenevi, U. (1977). Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia A. Axonal regeneration along the hippocampal fimbria. Brain Res. 138, 259–290.

    Article  PubMed  CAS  Google Scholar 

  5. Bjorklund, A. and Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the central nervous system. Physiol. Rev. 59, 62–100.

    PubMed  CAS  Google Scholar 

  6. Bjorklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E. and Iverson, S. D. (1980). Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199, 307–333.

    Article  PubMed  CAS  Google Scholar 

  7. Bjorklund, A., Stenevi, U., Dunnett, S. B. and Iversen, S. D. (1981). Functional reactivation of the deafferented neostriatum by nigral transplants. Nature 289, 497–499.

    Article  PubMed  CAS  Google Scholar 

  8. Reier, P. J., Perlow, M. J. and Guth, L. (1983). Development of embryonic spinal cord transplants in the rat. Dev. Brain Res. 10, 210–219.

    Article  Google Scholar 

  9. Bregman, B. S. and Reier, P. J. (1982). Transplantation of fetal spinal cord tissue to injured spinal cord in neonatal and adult rats. Soc. Neurosci. Abstr. 8, 870.

    Google Scholar 

  10. Kromer, L. F., Bjorklund, A. and Stenevi, U. (1981). Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implanta as bridges. Brain Res. 210, 173–200.

    Article  PubMed  CAS  Google Scholar 

  11. Lund, R. D. and Haushka, S. D. (1976). Transplanted neural tissue develops connections with the host rat brain. Science 193, 582–584.

    Article  PubMed  CAS  Google Scholar 

  12. Mcloon, S. C. and Lund, R. D. (1983). Development of fetal retina, tectum, and cortex transplanted to the superior colliculus of adult rats. J. Comp. Neurol. 217, 376–389.

    Article  PubMed  CAS  Google Scholar 

  13. Cotman, C. (1984). Specificity of termination fields formed in the developing hippocampus by fibers from transplants. In: Neural Transplants Development and Function. J. R. Sladek, Jr. and D. M. Gash, eds, Plenum Press, New York, pp. 305–324.

    Google Scholar 

  14. Gage, F. H., Bjorklund, A., Stenevi, U., Dunnett, S. B. and Kelly, P. A. T. (1984). Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 225, 533–535.

    Article  PubMed  CAS  Google Scholar 

  15. Dunnet, S. B., Bjorklund, A., Stenevi, U. and Iversen, S. D. (1981). Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res. 215, 147–161.

    Article  Google Scholar 

  16. Freed, W. J., Hoffer, B. J., Olson, L. and Wyatt, R. J. (1984). Transplantation of catecholamine-containing tissues to restore functional capacity of the damaged nigrostriatal system. In: Neural Transplants: Development and Function. J. R. Sladek, Jr. and D. M. Gash, eds, Plenum Press, New York, pp. 373–406.

    Google Scholar 

  17. Gash, D., Sladek, J. R. and Sladek, C. D. (1980). Functional development of grafted vasopressin neurons. Science 210, 1367–1369.

    Article  PubMed  CAS  Google Scholar 

  18. Perlow, M. J. (1980). Functional brain transplants. Peptides 1, 101–110.

    Article  Google Scholar 

  19. Isacson, O., Brundin, P., Kelly, P. A. T., Gage, F. H. and Björklund, A. (1984). Functional neuronal replacement by grafted striatal neurons in the ibotenic acid-lesioned rat striatum. Nature 311, 458–460.

    Article  PubMed  CAS  Google Scholar 

  20. Sugar, O. and Gerard, R. W. (1940). Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19.

    Google Scholar 

  21. Nygren, L.-G., Olson, L. and Seiger, A. (1977). Monoaminergic reinnervaton of the transected spinal cord by homologous fetal brain grafts. Brain Res. 129, 227–235.

    Article  PubMed  CAS  Google Scholar 

  22. Aihara, H. (1970). Autotransplantation of the cultured cerebellar cortex for spinal cord reconstruction. Brain and Nerve 22, 769–784 (in Japanese with English abstract).

    Google Scholar 

  23. Kao, C. C., Shimizu, Y., Perkins, L. C. and Freeman, L. W. (1970). Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection. J. Neurosurg. 33, 127–139.

    Article  PubMed  CAS  Google Scholar 

  24. Bunge, R. P., Johnson, M. I. and Thuline, D. (1983). Spinal cord reconstruction using cultured embryonic spinal cord strips. In: Spinal Cord Reconstruction. C. C. Kao, R. P. Bunge, and P. J. Reier, eds, Raven Press, New York, pp. 341–358.

    Google Scholar 

  25. Nornes, H., Björklund, A. and Stenevi, U. (1983a). Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brain stem neurons. Cell and Tissue Res. 230, 15–35.

    Article  CAS  Google Scholar 

  26. Nornes, H., Björklund, A. and Stenevi, U. (1983b). Transplantation strategies in spinal cord regeneration. In: Neural Transplants–Development and Function. J. R. Sladek, Jr. and D. M. Gash, eds, Plenum Press, New York, pp. 407–421.

    Google Scholar 

  27. Das, G. D. (1983). Neural transplantation in the spinal cord of adult rats. Conditions, survival, cytology, and connectivity of the transplants. J. Neurol. Sci. 62, 191–210.

    Article  PubMed  CAS  Google Scholar 

  28. Patel, U. and Bernstein, J. J. (1983). Growth, differentiation, and viability of fetal rat cortical and spinal cord implants into adult rat spinal cord. J. Neurosci. Res. 9, 303–310.

    Article  PubMed  CAS  Google Scholar 

  29. Reier, P. J., Bregman, B. S. and Wujek, J. R. (1985). Intraspinal transplants of embryonic spinal cord tissue in adult and neonatal rats: evidence for topographical differentiation and axonal interactions with the host CNS. In: Neural Grafting in the Mammalian CNS. A. Björklund and U. Stenevi, eds, Fernstrom Foundation Series, Vol. 5, Elsevier, Amsterdam, pp. 257–263.

    Google Scholar 

  30. Reier, P. J., Bregman, B. S. and Wujek, J. R. (1985). Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats, (submitted).

    Google Scholar 

  31. Bregman, B. S. (1983). Neural tissue transplants rescue rubrospinal neurons after neonatal spinal cord lesions. Soc. neurosci. Abstr. 9, 857.

    Google Scholar 

  32. Reier, P. J., Bregman, B. S. (1983). Immunocytochemical demonstration of substantia gelatinosa-like regions and serotonergic axons in embryonic spinal cord transplants in the rat. Soc. Neurosci. Abstr. 9, 696.

    Google Scholar 

  33. Bregman, B. S. and Goldberger, M. E. (1982). Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science 217, 553–555.

    Article  PubMed  CAS  Google Scholar 

  34. Bregman, B. S. and Goldberger, M. E. (1983a). Infant lesion effect I. Development of motor behavior following neonatal spinal cord damage in cats. Devel. Brain Res. 9, 1–15.

    Article  Google Scholar 

  35. Bregman, B. S. and Goldberger, M. E. (1983b). Infant lesion effect II. Sparing and recovery of function after spinal cord damage in newborn and adult cats. Devel. Brain Res. 9, 16–30.

    Google Scholar 

  36. Bregman, B. S. and Goldberger, M. E. (1983c). Infant lesion effect III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats. Devel. Brain Res. 9, 31–50.

    Google Scholar 

  37. Prendergast, J. and Stelzner, D. J. (1976a). Increased collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rats. J. Comp. Neurol. 166, 145–162.

    Article  PubMed  CAS  Google Scholar 

  38. Prendergast, J. and Stelzner, D. J. (1976b). Changes in the magnocellular portion of the rednucleus following thoracic hemisection in the neonatal and adult rat. J. Comp. Neurol. 166, 163–172.

    Article  PubMed  CAS  Google Scholar 

  39. Goshgarian, H. G., Koistinen, J. M. and Schmidt, E. R. (1983). Cell death and changes in the retrograde transport of horseradish peroxidase in rubrospinal neurons following spinal cord hemisection in the adult rat. J. Comp. Neurol. 214, 251–257.

    Article  PubMed  CAS  Google Scholar 

  40. Schreyer, D. J. and Jones, E. G. (1982). Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats. Neurosci. 7, 1837–1854.

    Article  CAS  Google Scholar 

  41. Bernstein, D. R. and Stelzner, D. J. (1983). Developmental plasticity of the corticospinal tract (CST) following mid-thoracic spinal cord “over-hemisection” in the neonatal rat. J. Comp. Neurol. 221, 371–385.

    Article  Google Scholar 

  42. Lieberman, A. R. (1974). Some factors affecting retrograde neuronal responses to axonal lesions. In: Essays on the Nervous System. R. Bellairs and E. G. Gray, eds, Oxford: Clarendon Press, pp. 71–105.

    Google Scholar 

  43. Barron, K. D. (1983). Comparative observations on the cytologic reactions of central and peripheral nerve cells to axotomy. In: Spinal Cord Reconstructuion. C. C. Kao, R. P. Bunge, and P. J. Reier, eds, Raven Press, New York, pp. 7–40.

    Google Scholar 

  44. Perez-Polo, J. R., DE Vellis, J. and Haber, B. (1983). Growth and trophic factors. Progress in Clinical and Biological ResearchVol. 118, Alan R. Liss Inc., New York.

    Google Scholar 

  45. Grenne, L. A. and Shooter, E. M. (1980). The nerve growth factor: biochemistry, synthesis and mechanism of action, Ann. Rev. Neurosci. 3, 353–402.

    Article  Google Scholar 

  46. Levi-Montalcini, R. and Angeletti, P. U. (1968). Nerve growth factor. Physiol. Rev. 48, 534–569.

    PubMed  CAS  Google Scholar 

  47. Bradshaw, R. A. (1978). Nerve growth factor. Ann. Rev. Biochem. 47, 191–216.

    Article  PubMed  CAS  Google Scholar 

  48. Gorin, P. D. and Johnson, E. M. (1979). Experimental autoimmune model of nerve growth factor deprivation: effects on developing perpiheral sympathetic and sensory neurons. Proc. Natl. Acad. Sci. 76, 5382–5386.

    Article  PubMed  CAS  Google Scholar 

  49. Johnson, E. M., Jr., Gorin, P. D., Brandeis, L. D. and Pearson, J. (1980). Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science 210, 916–918.

    Article  PubMed  CAS  Google Scholar 

  50. Yip, H. K. and Johnson, E. M., Jr. (1984). Developing dorsal root ganglion neurons require trophic support from their central processes: evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proc. Natl. Acad. Sci. 81, 6245–6249.

    Article  PubMed  CAS  Google Scholar 

  51. Yip, H. K., Rich, K. M., Lampe, P. A. and Johnson, E. M., Jr. (1984). The effects of nerve growth factor and its antiserum on the postnatal development and survival after injury of sensory neurons in rat dorsal root ganglia. J. Neurosci. 4, 2986–2992.

    PubMed  CAS  Google Scholar 

  52. Hendry, I. A. and Campbell, J. (1976). Morphometric analysis of rat superior cervical ganglion after axotomy and NGF treatment. J. Neurocytol. 5, 351–360.

    Article  PubMed  CAS  Google Scholar 

  53. Banks, B. E. C. and Walter, S. J. (1977). The effects of postganglionic axotomy and nerve growth factor on superior cervical ganglia of developing mice. J. Neurocytol. 6, 287–297.

    Article  PubMed  CAS  Google Scholar 

  54. Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R. and Schwab, M. (1985). Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neurosci. 14, 55–68.

    Article  CAS  Google Scholar 

  55. Banker, G. A. (1980). Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809–810.

    Article  PubMed  CAS  Google Scholar 

  56. Barde, Y.-A., Edgar, D. and Thoenen, H. (1982). Purification of a new neuronotrophic factor from mammalian brain. EMBOJ. 1, 549–553.

    CAS  Google Scholar 

  57. Barde, Y.-A., Edgar, D. and Thoenen, H. (1983). New neuronotrophic factors. Ann. Rev. Physiol. 45, 601–612.

    Article  CAS  Google Scholar 

  58. Lindsay, R. M. and Peters, C. (1984). Spinal cord contains neutrotrophic activity for spinal nerve sensory neurons. Late developmental appearance of a survival factor distinct from nerve growth factor. Neurosci. 12, 45–51.

    Article  CAS  Google Scholar 

  59. Davies, A. M. and Lindsay, R. M. (1984). Neural crest derived spinal and cranial sensory neurones are equally sensitive to NGF but differ in their response to tissue extracts. Dev. Brain Res. 14, 121–127.

    Article  CAS  Google Scholar 

  60. Muller, H. W. and Seifert, W. (1982). A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J. Neurosci. Res. 8, 195–204.

    Article  CAS  Google Scholar 

  61. Muller, H. W., Beckh, S. and Seifert, W. (1984). Neurotrophic factor for central neurons. Proc. Natl. Acad. Sci. 81, 1248–1252.

    Article  PubMed  CAS  Google Scholar 

  62. Manthorpe, M., Longo, F. M. and Varon, S. (1982). Comparative features of spinal neuronotrophic factors in fluids collected in vitro and in vivo. J. Neurosci. Res. 8, 241–250.

    Article  PubMed  CAS  Google Scholar 

  63. Reier, P. J., Stensaas, L. J. and Guth, L. (1983). The astrocytic scar as an impediment to regeneration in the central nervous system. In: Spinal Cord Reconstruction. Kao, C. C., Bunge, R. P., and Reier, P. J., eds, Raven Press, New York, pp. 163–195.

    Google Scholar 

  64. Kalil, K. and Reh, T. (1979). Regrowth of severed axons in the neonatal CNS. Science 205, 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  65. Kalil, K. and Reh, T. (1982). Light and electron microscopic study of regrowing pyramidal tract fibers. J. Comp. Neurol. 211, 265–275.

    Article  PubMed  CAS  Google Scholar 

  66. Gearhart, J., Oster-Granite, M. L., and Guth, L. (1979). Histological changes after transection of the spinal cord of fetal and neonatal mice. Exp. Neurol. 66, 1–15.

    Article  PubMed  CAS  Google Scholar 

  67. Stenevi, U., Bjorklund, A. and Svengaard, N. (1976). Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res. 114, 1–20.

    Article  PubMed  CAS  Google Scholar 

  68. Das, G. D. (1983). Neural transplantation in mammalian brain–some conceptual and technical considerations. In: Neural Tissue Transplantation Research. Wallace, R. B., and Das, G. D., eds. Springer Verlag, New York, pp. 1–64.

    Chapter  Google Scholar 

  69. Kromer, L. F., Bjorklund, A. and Stenevi, U. (1983). Intracephalic neural implants in the adultrat brain. I. Growth and mature organization of brainstem, cerebellar and hippocampal implants. J. Comp. Neurol. 218, 433–459.

    Article  PubMed  CAS  Google Scholar 

  70. Bernstein, D. R., Bechard, D. E., and Stelzner, D. J. (1981). Neuritic growth maintained near the lesion site long after spinal transection in the newborn rat. Neurosci. Lett. 26, 55–60.

    Article  PubMed  CAS  Google Scholar 

  71. Barrett, C. P., Donati, E. J. and Guth, L. (1984). Differences between adult and neonatal ratsin their astroglial response to spinal injury. Exp. Neurol. 84, 374–385.

    Article  PubMed  CAS  Google Scholar 

  72. Bregman, B. S. (1985). Neural tissue transplants modify central neurons’ responses to damage. In: Development and Plasticity of the Mammalian Spinal Cord. Goldberger, M. E., Gorio, A., and Murray, M., eds. Liviana Press, Padova, in press.

    Google Scholar 

  73. Bregman, B. S. and Mcatee, M. M. (1985). Plasticity of serotonergic projections following spinalcord lesions and transplants in newborn rats. Anat. Rec. 211, 26A.

    Google Scholar 

  74. Bregman, B. S., Mcatee, M. M., Sobhani, S. (1985). Axonal growth and regrowth after spinalcord lesions in newborn rats. Soc. Neurosci. Abstr. 11, in press.

    Google Scholar 

  75. Alvadro-Mallart, R. M. and Sotelo, C. (1982). Differentiation of cerebellar anlage heterotypically transplanted to adult rat brain: a light and electron microscopic study. J. Comp. Neurol. 212, 247–267.

    Article  Google Scholar 

  76. Kromer, L. F., Bjorklund, A. and Stenevi, U. (1979). Intracephalic implants: a technique for studying neuronal interactions. Science 204, 1117–1119.

    Article  PubMed  CAS  Google Scholar 

  77. Sunde, N. A. and Zimmer, J. (1983). Cellular, histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains. Dev. Brain Res. 8, 165–191.

    Article  Google Scholar 

  78. Zimmer, J. and Sunde, N. (1984). Neuropeptides and astroglia in intracerbral hippocampal transplants: an immunohistochemical study in the rat. J. Comp. Neurol. 227, 331–347.

    Article  PubMed  CAS  Google Scholar 

  79. Jaeger. C. B. (1985). Cytoarchitectonics of substantia nigra grafts: A light and electron microscopic study of immunocytochemically identified dopaminergic neurons and fibrous astrocytes. J. Comp. Neurol. 231, 121–135.

    Article  PubMed  CAS  Google Scholar 

  80. Lund, R. D., Mcloon, S. C., Harvey, A. R., and Jaeger, C. B. (1983). Transplantation of the developing visual system of the rat. In: Nerve, Organ, and Tissue Regeneration: Research Perspec-tives. Seil, F. J., ed, Academic Press, Inc, New York, pages 303–324.

    Google Scholar 

  81. Das, G. D., Hallas, B. H. and Das, K. G. (1980). Transplantation of brain tissue in the brain of rat. I. Growth characteristics of neocortical transplants from embryos of different ages. Amer. J. Anat. 158, 135–145.

    Article  PubMed  CAS  Google Scholar 

  82. Jaeger, C. B. and Lund, R. D. (1980). Transplantation of embryonic occipital cortex to the brain of newborn rats. An autoradiographic study of transplant histogenesis. Exp. Brain Res. 40, 265–272.

    Article  PubMed  CAS  Google Scholar 

  83. Oblinger, M. M. Hallas, B. H. and Das, G. D. (1980). Neocortical transplants in the cerebellum of the rat: their afferents and efferents. Brain Res. 189, 228–232.

    Article  PubMed  CAS  Google Scholar 

  84. Lindsay, R. M. and Raisman, G. (1984). An autoradiographic study of neuronal development, vascularization, and glial cell migration from hippocampal transplants labeled in intermediate explant culture. Neurosci. 12, 513–530.

    Article  CAS  Google Scholar 

  85. Raisman, G. Lawrence, J. M. Zhou, C.-F. and Lindsay, R. M. (1985). Some neuronal, glialand vascular interactions which occur when developing hippocampal primordia are incorporated into adult host hippocampi. In: Neural Grafting in the Mammalian CNS. Bjorklund, Stenevi, U., eds, Elsevier, Amsterdam, pp. 125–150.

    Google Scholar 

  86. Kromer, L. F. (1980). Glial scar formation in the brain of adult rats is inhibited by implants of embryonic CNS tissue. Soc. Neurosci. Abstr. 6, 688.

    Google Scholar 

  87. Azmitia, E. C., Whitaker, P. M. (1983). Formation of a glial scar following microinjection of fetal neurons into the hippocampus or midbrain of the adult rat: an immunocytochemical study. Neurosci. Lett. 38, 145–150.

    Article  PubMed  CAS  Google Scholar 

  88. Wujek, J. R. and Reier, P. J. (1984). Fetal rat spinal cord tissue transplanted into rat spinal cord: immunocytochemical characterization of the host-graft interface. Soc. Neurosci. Abstr. 10, 1023.

    Google Scholar 

  89. Bregman. B. S. and Reier, P. J. (1985). Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death, (submitted).

    Google Scholar 

  90. Abercrombie, M. (1946). Estimation of nuclear population from microtome sections, Anat. Rec. 94, 238–248.

    Google Scholar 

  91. Leong. S. K., Shieh, J. Y., and Wong, W. C. (1948). Localizing spinal cord projecting neurons inneonatal and immature albino rats. J. Comp. Neurol. 228, 18–23.

    Google Scholar 

  92. Prendergast, J., Smiell, J. and Phillips, T. (1982). The development of the rubrospinal tractin the rat: an HRP study. Anat. Rec. 202,151 A.

    Google Scholar 

  93. Prendergast, J. and Misantone, L. J. (1980). Sprouting by tracts descending from the midbrain to the spinal cord: the result of thoracic funiculotomy in the newborn, 21 day old, and adult rat. Exp. Neurol. 69, 458–480.

    Article  PubMed  CAS  Google Scholar 

  94. Prendergast, J. and Bates, R. (1981). The time course of the loss of red nucleus neurons as a result of T5–6 hemisection in the neonatal rat. Soc. Neurosci. Abstr. 7, 292.

    Google Scholar 

  95. Cunningham, T. J. and Haun, F. (1984). Trophic relationships during visual system development. Development of Visual Pathways in Mammals. Alan Liss, Inc., New York. pp. 315–327.

    Google Scholar 

  96. Haun, F. and Cunningham, T. J. (1984). Cortical transplants reveal CNS trophic interactions insitu. Dev. Brain Res. 15, 290–294.

    Article  Google Scholar 

  97. Cunningham, T. J. (1982). Naturally occurring neuron death and its regulation by developing neural pathways. International Rev. Cytol. 72, 163–186.

    Article  Google Scholar 

  98. Oppenheim, R. W. (1981). Neuronal cell death and some related regressive phenomena during neurogenesis: a selective historical review and progress report. In: Studies in Developmental Neurobiology. Cowan, W. M. ed, Oxford University Press, New York, pp. 74–133.

    Google Scholar 

  99. Bjorklund, A. and Wiklund, L. (1980). Mechanism of regrowth of the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. I. Biochemical correlates. Brain Res. 191, 109–128.

    CAS  Google Scholar 

  100. Wiklund, L. and Bjorklund, A. (1980). Mechanisms of regrowth in the bulbospinal serotonin system following 5,6-dihydroxytryptamine induced axotomy. II. Fluorescence histochemical observations. Brain Res. 191, 129–160.

    Article  CAS  Google Scholar 

  101. Bjorklund, A., Nobin, A. and Stenevi, U. (1973). Regeneration of central serotonin neurons after axonal degeneration induced by 5,6-dihydroxytryptamine, Brain Res. 50, 214–220.

    Article  PubMed  CAS  Google Scholar 

  102. Nygren, L. G., Fuxe, K., Jonsson, G. and Olson, L. (1974). Functional regeneration of 5-hydro-xytryptamine nerve terminals in the rat spinal cord following 5,6-dihydroxytryptamine induced degeneration. Brain Res. 78, 281–306.

    Article  Google Scholar 

  103. Towle, A. C., Breese, G. R., Mueller, R. A., Coyle, S. and Lauder, J. M. (1984). Early post natal administration of 5,7-DHT: Effects on serotonergic neurons and terminals. Brain Res. 310, 67–75.

    Article  PubMed  CAS  Google Scholar 

  104. Wallace. J. A. and Lauder, J. M. (1983). Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res. Bull. 10, 459–479.

    Google Scholar 

  105. Hadjiconstantinou, M., Panula, P., Lackovic, Z., and Neff, N. H. (1984). Spinal cord serotonin: a biochemical and immunohistochemical study following transection. Brain Res. 322, 245–254.

    Article  PubMed  CAS  Google Scholar 

  106. Lamotte, C. C., Johns, D. R., and Lanerolle, N. C. P. (1982). Immunohistochemical evidence of indoleamine neurons in monkey spinal cord. J. Comp. Neurol. 206, 359–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bregman, B.S., Reier, P.J. (1987). Neural Tissue Transplants Modify Response of the Immature Spinal Cord to Damage. In: Althaus, H.H., Seifert, W. (eds) Glial-Neuronal Communication in Development and Regeneration. NATO ASI Series, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71381-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71381-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71383-5

  • Online ISBN: 978-3-642-71381-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics