Skip to main content

From Neuroepithelium to Mature Astrocytes

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 2))

Abstract

In this chapter I will describe the differentiation of astrocytes of mouse neopallium in culture based mainly on our own observations. Cells were obtained from mouse embryos of different developmental stages, from the neural tube of early embryos to the brain of paranatal animals. The neopallium was dissected, then the cells were disaggregated and planted in culture in dilutions adjusted so as to be conducive to the formation of cell colonies rather than a monolayer of cells (22, 28). Such cultures select cells that (a) adhere to the substratum (in this case, the plastic of the tissue culture petri dishes, and (b) proliferate to form colonies. Approximately 25 per cent of colonies in our cultures start from single cells, thus forming true clones, others form from two or a few cells. Spatial relationships and interactions between cells in the colony determine its gross morphology and this is so constant that it identifies the various types of colony and, in turn, the cells composing them (23, 26).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, J. J. and Brightman, M. W. (1981). Orthogonal assemblies of intramembranous particles - an attribute of the astrocyte. In: Glial and Neuronal Cell Biology. E. A. Vidrio and S. Fedoroff, eds., Alan R. Liss, Inc. New York., pp. 21–35.

    Google Scholar 

  2. Anders, J. J. and Brightman, M. W. (1982). Particle assemblies in astrocytic plasma membranes are rearranged by various agents in vitro and cold injury in vivo. J. Neurocytology, 11, 1009–1029.

    Article  CAS  Google Scholar 

  3. Bologa, L., Z’graggen, A., Rossi, E. and Herschkowitz, N. (1982). Differentiation and proliferation: Two possible mechanisms for the regeneration of oligodendrocytes in culture. J. Neurol. Sci , 57, 419–434.

    Article  PubMed  CAS  Google Scholar 

  4. Berwald-Netter, Y., Beaudoin, D. and Couraud, F. (1983). Contribution to the characterization of astrocyte membrane properties. J. Neurochem., 41, Suppl., p. 53.

    Google Scholar 

  5. Berwald-Netter, Y., Koulakoff, A., Nowak, L. and Ascher, P. (1986). Ionic channels in glial cells. In: Astrocytes. S. Fedoroff and A. Vernadakis, eds., Academic Press, New York, (in press).

    Google Scholar 

  6. Bevan, S., Chiu, S. Y., Gray, P. T. A. and Ritchie, J. M. (1985). Sodium channels in rat cultured astrocytes. J. Phys. (Lond) (in press).

    Google Scholar 

  7. Billing, D., Nicol, A., McGinty, R., Cowin, P., Morgan, J. and Garrod, D. (1982). The cytoskeleton and substratum adhesion in chick embryonic corneal epithelial cells. J. Cell Sci., 57, 51–71.

    Google Scholar 

  8. Brightman, M. W., Prescotte, L. and Reese, T. S. (1975). Intercellular junctions of special ependyma. In: Brain Endocrine Interaction Vol. II. The Ventricular System. K. M. Knigge, D. E. Soott, M. Kobayashi and S. Ishii, eds., Karger, Basel pp. 146–165.

    Google Scholar 

  9. Burgess, S., Trimmer, P. A. and McCarthy, K. D. (1985). Autoradiographic quantitation of β-adrenergic receptors on neural cells in primary cultures. II Comparison of receptors on various types of immunocytochemically identified cells. Brain Res , 335, 11–19.

    Article  PubMed  CAS  Google Scholar 

  10. Chronwall, B. and Wolff, J. R. (1980). Prenatal and postnatal development of GABA accumulating cells in the occipital neocortex of rat. J. Comp. Neurol , 190, 187–208.

    Article  PubMed  CAS  Google Scholar 

  11. Ciesielski-Treska, J., Guerold, B. and Aunis, D. (1982). Immunofluorescence study on the organization of actin in astroglial cells in primary cultures. Neurosci , 7, 509–522.

    Article  CAS  Google Scholar 

  12. Cleveland, R. and Fedoroff, S. (1986). Cell migration, a stage in astrocyte differentiation. Int. J. Dev. Neurosci. (Submitted).

    Google Scholar 

  13. Dahl, D. and Bignami, A. (1982). Immunohistological localization of desmin, the muscle type 100 A filament protein, in rat astrocytes and Mullerglia. J. Histochem. Cytochem , 30, 207–213.

    Article  PubMed  CAS  Google Scholar 

  14. Dahl, D., Rueger, D. C., Crosby, C. J. and Bignami, A. (1984). Cell-specific domains of glial-and muscle-type intermediate filament proteins. Exp. Cell Res , 154, 464–473.

    Article  PubMed  CAS  Google Scholar 

  15. Doering, L. C. and Fedoroff, S. (1982). Isolation and identification of neuroblast precursor cells from mouse neopallium. Dev. Brain Res , 5, 229–233.

    Article  Google Scholar 

  16. Doering, L. C., Fedoroff, S. and Devon, R. M. (1983). Fibrous astrocytes and reactive astrocyte-like cells in transplants of cultured astrocyte precursor cells. Dev. Brain Res , 6, 183–198.

    Article  Google Scholar 

  17. Drejer, J., Larsson, O. M. and Schousboe, A. (1982). Characterization of l-glutamate uptake-into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res , 47, 259–269.

    Article  PubMed  CAS  Google Scholar 

  18. Duffy, P. E. (1983). Astrocytes, Normal, Reactive and Neoplastic. Raven Press, New York.

    Google Scholar 

  19. Ebersalt, C., Perez, M., Vassent, G. and Bockaert, J. (1981). Characteristics of the β1 and β2-adrenergic-sensitive adenyl cyclase in glial cell primary cultures and their comparison with β2- adrenergic-sensitive adenylate cyclase of meningeal cells. Brain Res , 213, 151–161.

    Article  Google Scholar 

  20. Eisenbarth, G. S., Walsh, F. S. and Nirenberg, M. (1979). Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci., U.S.A., 76, 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  21. Evans, T., McCarthy, K. D. and Harden, T. K. (1984). Regulation of cyclic amp accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells. J. Neurochem , 43, 131–138.

    Article  PubMed  CAS  Google Scholar 

  22. Fedoroff, S. (1977). Tracing glial cell lineages by colony formation in primary cultures. In: Cell, Tissue and Organ Cultures in Neurobiology. S. Fedoroff and L. Hertz, eds., Academic Press, New York.

    Google Scholar 

  23. Fedoroff, S. (1978). The development of glial cells in primary cultures. In: Dynamic Properties of Glial Cells, Fedoroff, S, eds., pp. 83–92, Pergamon Press.

    Google Scholar 

  24. Fedoroff, S. (1985). Macroglial cell lineages. In: Molecular Bases of Neural Development. G. M. Edelman, W. E. Gall and W. M. Cowan, Eds., John Wiley and Sons, New York. pp. 91–117.

    Google Scholar 

  25. Fedoroff, S. and Ahmed, I. (1986). Astrocyte cell lineage VI. Transformation of epithelial type cells into pleomorphic cells. Neurosci. (submitted).

    Google Scholar 

  26. Fedoroff, S. and Doering, L. C. (1980). Colony culture of neural cells as a model for the study of cell lineages in the developing CNS: The astrocyte cell lineage. Current Topics in Dev. Biol , 16, 283–304.

    Article  CAS  Google Scholar 

  27. Fedoroff, S., White, R. V., Neal, J., Subrahmanyan, L. and Kalnins, V. I. (1983). Astro cyte cell lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin- and GFP-containing intermediate filaments. Dev. Brain Res , 7, 303–315.

    Article  CAS  Google Scholar 

  28. Fedoroff, S., Neal, J., Opas, M. and Kalnins, V. I. (1984 a). Astrocyte cell lineage. III. The morphology of differentiating mouse astrocytes in colony culture. J. Neurocytol , 13, 1–20.

    Google Scholar 

  29. Fedoroff, S., Houle, J. D. and Kalnins, V. I. (1984 b). Intermediate filaments and neural cell differentiation. Int. J. Neurology (in press).

    Google Scholar 

  30. Fedoroff, S., Ahmed, I., Kalnins, V. I. and Opas, M. (1986). Microfilament organization in reactive astrocytes in culture. Neurosci. (Submitted).

    Google Scholar 

  31. Franke, W. W., Schmid, E., Schiller, D. L., Winter, S., Jarasch, E. D., Moll, R., Dank, H., Jackson, B.W. and Illmensee, K. (1982). Differentiation-related patterns of expression of proteins of intermediate-size filaments in tissues and cultured cells. CSHS, 46, 431–453.

    Google Scholar 

  32. Gilman, A. G. and Schrier, B. K. (1972). Adenosine cyclic 3’,5’-monophosphate in fetal rat brain cell cultures. I. Effect of catecholamines. Molec. Pharmacol 8, 410–416.

    CAS  Google Scholar 

  33. Goldman, J. E. and Chin, F. C. (1984 a). Growth kinetics, cell shape and the cytoskeleton of primary astrocyte cultures. J. Neurochem , 42, 175–184.

    Google Scholar 

  34. Goldman, J. E. and Chin, F. C. (1984 b). Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganization in astrocytes. Brain Res , 306, 85–95.

    Google Scholar 

  35. Goldman, R. D., Hill, B. F., Steinert, P., Whitman, M. A. and Zackaroff, R. V. (1980). Intermediate filament-microtubule interactions: Evidence in support of a common organization center. In: Microtubules and Microtubule Inhibitors. M. DeBrabander and J. DeMay, eds., Elsevier/ North Holland, New York. pp. 91–102.

    Google Scholar 

  36. Goldman, J. E., Hirano, M., YU, R. K. and Seyfried, T. N. (1984 c). GD3ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J. Neuroimmunology, 7, 179–192.

    Google Scholar 

  37. Gonatas, N. K., Hiragama, M., Stieber, A. and Silberberg, D. H. (1982). The ultrastructure of isolated rat oligodendroglial cell cultures. J. Neurocytol , 11, 997–1008.

    Article  PubMed  CAS  Google Scholar 

  38. Green, H., Fuchs, E. and Watt, F. (1982). Differentiated structural components of the keratinocyte. CSHS, 46, 293–301.

    Google Scholar 

  39. Groschel-Stewart, U., Unsicker, K. and Leonhardt, H. (1977). Immunochemical demonstration of contractile proteins in astrocytes, marginal glial and ependymal cells in rat diencephalon. Cell and Tissue Res , 180, 133–137.

    Article  CAS  Google Scholar 

  40. Güldner, F. H. and,Wolff J. R. (1973). Neurono-glial synaptoid contacts in the median eminence of the rat: Ultrastructure, staining properties and distribution of tanycytes. Brain Res, 61, 217–234.

    Article  PubMed  Google Scholar 

  41. Hamprecht, B. (1986). Astroglia cells in culture, Receptors and cyclic nucleotides. In: Astrocytes. S. Fedoroff and A. Vernadakis, eds., Academic Press, New York, (in press).

    Google Scholar 

  42. Hansson, E. (1986). Astrocyte in the cerebral cortex: With special regard to tissue culture studies. In: Astrocytes. S. Fedoroff and A. Vernadakis, eds., Academic Press, New York, (in press).

    Google Scholar 

  43. Hansson, E., Rönnback, L. and Sellström, A. (1984). Is there a “Dopaminergic glial cell”? Neurochem. Res , 9, 679–689.

    Article  PubMed  CAS  Google Scholar 

  44. Heath, J. P. (1982). Adhesion to substratum and locomotory behaviour of fibroblastic and epithelial cells in culture. In: Cell Behaviour. R. Bellairs, A. Curtis and G. A. Dunn, eds., Cambridge University Press., pp. 78–108.

    Google Scholar 

  45. Hertz, L. (1982). Astrocytes. In: Handbook of Neurochemistry. A. Lajtha, ed., Vol. 1 2nd Edition, Plenum Press, New York, pp. 319–355.

    Google Scholar 

  46. Hertz, L. and Richardson, J. S. (1983). Acute and chronic effects of antidepressant drugs on ß-adrenergic funvtion in astrovytes in primary cultures. An indication of glial involvement in affective disorders? J. Neurosci. Res , 9, 173–182.

    Article  PubMed  CAS  Google Scholar 

  47. Hertz, L., Bock, E. and Schousboe, A. (1978). GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev. Neurosci, 1, 226–238.

    Article  CAS  Google Scholar 

  48. Hösli, E. and Hösli, L. (1982). Evidence of the existance of α- and β-adrenoceptors on neurons and glial cells of cultured rat central nervous system an autoradiographic study. Neurosci , 7, 2873–2881.

    Article  Google Scholar 

  49. Hösli, L., Hösli, E., Schneider, M. and Wiget, W. (1984). Evidence for the existence of his tamine H1 and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci. Lett , 48, 287–291.

    Article  PubMed  Google Scholar 

  50. Houle, J. D. and Fedoroff, S. Fedoroff. (1983). Temporal relationship between the appearance of vimentin and neural tube development. Dev. Brain Res , 9, 189–195.

    Article  Google Scholar 

  51. Houle, J. D. and Fedoroff, S. (1985). Binding of tetanus toxin and A2B5 monoclonal antibody to fibrous astrocytes in cultures. J. Neurosci. Res. (submitted).

    Google Scholar 

  52. Juurlink, B. H. J., Fedoroff, S., Hall, D. and Nathaniel, E.J.H. (1981). Astrocyte cell lineage. I Astrocyte progenitor cells in mouse neopallium. J. Comp. Neurology, 200, 375–391.

    Article  CAS  Google Scholar 

  53. Kalnins, V. I., Subrahmanyan, L. and Fedoroff, S. (1985). Assembly of glial intermediate filament protein (GFP) is initiated in the centriolar region. Devel. Brain Res. (in press).

    Google Scholar 

  54. Kalnins, V. I., Opas, M., Ahmed, I. and Fedoroff, S. (1984). Astrocyte cell lineage IV. Distribution of microfilaments and adhesion patterns in astrocytes and their precursor cells in culture. J. Cell Biol, (in press).

    Google Scholar 

  55. Kalnins, V. I., Subrahmanyan and Opas, M. (1986). The cytoskeleton. In: Astrocytes. S. Fedoroff and A. Vernadakis, eds., Academic Press, New York, 1986 (in press).

    Google Scholar 

  56. Kästner, R. (1985). Zur Reaktion der Astrocyten nach Läsion des ZNS verschiedener Wirbeltiere. Dr. of Natural Sciences Thesis, Biology Faculty, Eberhard-Karl-Universität Tübingen, pp. 1–76.

    Google Scholar 

  57. Kettenmann, H. and Orkand, R. K. (1983). Intracellular SITS injection dye-uncouples mammalian oligodendrocytes in culture. Neurosci. Lett., 39, 21–26.

    Article  PubMed  CAS  Google Scholar 

  58. Kettmann, H., Sonnhof, U. and Schachner, M. (1983). Exclusive potassium dependence of the membrane potential in cultured mouse oligodendrocyte. J. Neurosci , 3, 500–505.

    Google Scholar 

  59. Kimelberg, H. K. and Pelton, E. W. (1983). High-affinity uptake of [3H] norepinephrine by primary astrocyte cultures and its inhibition by tricyclic antidepressants. J. Neurochem , 40, 1265–1270.

    Article  PubMed  CAS  Google Scholar 

  60. Koulakoff, A., Bizzini, B. and Berwald-Netter, Y. (1982). A correlation between the appear ance and the evolution of tetanus toxin binding cells and neurogenesis. Dev. Brain Res ,, 139–147.

    Google Scholar 

  61. Koulakoff, A. Bizzini, B. and Berwald-Netter, Y. (1983). Neuronal acquisition of tetanus toxin binding sites, Relationship with the last mitotic cycle. Dev. Biol , 100, 350–357.

    Article  PubMed  CAS  Google Scholar 

  62. Landis, D. M. D. (1986). Membrane structure in astrocytes. In: Astrocytes. S. Fedoroff and A. Vernadakis, eds., Academic Press, New York (in press).

    Google Scholar 

  63. Landis, D. M. D. and Reese, T. S. (1981). Membrane structure in mammalian astrocytes: A review of freeze-fracture studies in adult, developing, reactive and cultured astrocytes. J. Exp. Biol , 95, 35–48.

    PubMed  CAS  Google Scholar 

  64. Landis, D. M. D. and Reese, T. (1982). Regional organization of astrocytic membranes in cerebellar cortex. Neurosci , 7, 937–950.

    Article  CAS  Google Scholar 

  65. Landis, D. M. D. and Weinstein, L. A. (1983). Membrane structure in cultured astrocytes. Brain Res , 276, 31–41.

    Article  PubMed  CAS  Google Scholar 

  66. Lebeux, Y. J. (1972). An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland. II. Nerve endings. Z Zellforsch , 127, 439–461.

    Article  CAS  Google Scholar 

  67. Lewis, P. D. (1968). The fate of subependymal cells in the adult rat brain, with a note on the origin of microglia. Brain, 91, 721–738.

    Article  PubMed  CAS  Google Scholar 

  68. Leonhardt, H. and Backhus-Roth, A. (1969). Synapsenartige Kontakte zwischen intraven- trikulösen Axonendigungen und freien Oberflächen von Ependymzellen des Kaninchengehirns. Z Zellforsch , 97, 369–376

    Article  PubMed  CAS  Google Scholar 

  69. Löffler, F., van Calker, D. and Hamprecht, B. (1982). Parathyrin and calcitonin stimulate cyclic AMP accumulation in cultured murine brain cells. EMBOJ, 1, 297–302.

    Google Scholar 

  70. MacVicar, B. A. (1984). Voltage-dependent calcium channels in glial cells. Science, 226, 1345–1347.

    Article  PubMed  CAS  Google Scholar 

  71. Magistretti, P. J., Manthorpe, M., Bloom, F. E. and Varon, S. (1983). Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regul. Pept , 6, 71–80.

    Article  PubMed  CAS  Google Scholar 

  72. Massa, P. T. and Mugnaini, E. (1982). Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze-fracture study. Neurosci , 7, 523–538.

    Article  CAS  Google Scholar 

  73. Massa, P. T. and Mugnaini, E. (1985). Cell-cell junctional interactions and characteristic plasma membrane features of cultured rat glial cells. Neurosci , 14, 695–709.

    Article  CAS  Google Scholar 

  74. McCarthy, K. D. and de Vellis, J. (1978). Alpha-adrenergic receptor modulation of beta-adrenergic, adenosine and prostaglandin E, increased adenosine 3’:5’-cyclic monophosphate levels in primary cultures of glia. J. Cycl. Nucl. Res , 4, 15–26.

    CAS  Google Scholar 

  75. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B. and Krepler, R. (1982). The catalogue of human cytokeratin polypeptides: Patterns of expression of cytokeratins in normal epithelia, tumors and cultured cells. Cell, 31, 11–24.

    Article  PubMed  CAS  Google Scholar 

  76. Narumi, S., Kimelberg, H. K. and Bourke, R. S. (1978). Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain. J. Neurochem , 31, 1479–1490.

    Article  PubMed  CAS  Google Scholar 

  77. Noack, W. and Wolff, J. R. (1970). Über neuritenähnliche intraventrikuläre Fortsätze und ihre Kontakte mit dem Ependym der Seitenventrikel der Katze. Z Zellforsch , 111, 572–585.

    Article  PubMed  CAS  Google Scholar 

  78. Noetzel, M. and Agrawal, H. C. (1985). Immunoblot identification of glial fibrillary acidic protein in rat sciatic nerve, brain, and spinal cord during development. Neurochem. Res , 10, 737–753.

    Article  PubMed  CAS  Google Scholar 

  79. Opas, M. and Kalnins, V. I. (1984). Surface reflection interference microscopy, a new method for visualizing cytoskeletal components by light microscopy. J. Microscopy, 133, 291–300.

    Article  CAS  Google Scholar 

  80. Paterson, J. A., Privat, A., Ling, E. A. and Leblond, C. P. (1973). Investigation of glial cells in semithin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after [3H]-thymidine injection into the lateral ventricle of the brain of young rats. J. Comp. Neurology, 149, 83–102.

    Article  CAS  Google Scholar 

  81. Pelton, E. W., Kimelberg, H. K., Shiperd, S. V. and Bourke, R. S. (1981). Dopamine and norepinephrine uptake and metabolism by astroglial cells in culture. Life. Sci , 28, 1655–1663.

    Article  PubMed  CAS  Google Scholar 

  82. Ploem, J. S. (1975). General introduction. In Fifth International Conference on Immunofluorescence and Related Staining Techniques, Ann. New York Acad. Sci , 254, 4–20.

    Google Scholar 

  83. Privat, A. and Leblond, C. P. (1972). The subependymal layer and neighboring region in the brain of the young rat. J. Comp. Neurology, 146, 277–302.

    Article  CAS  Google Scholar 

  84. Propst, F., van Calker, D., Moroder, L., Wünsch, E. and Hamprecht, B. (1979). The influence of gastrointestinal hormones on the level of cyclic AMP in neuroblastoma x glioma hybrid cells and in cells of primary culture of perinatal mouse brain. In: Hormone Receptors in Digestion and Nutrition. G. Rosselin, P. Fromageot and S. Bonfils, eds., Elsevier/North-Holland Press, Amsterdam, pp. 475–480.

    Google Scholar 

  85. QUANDT, F. N. and MacVicar, B. A. (1984). Ca++activated K+ channels in glial cells. Soc. Neurosci. Abstr. 276. 8 p. 939.

    Google Scholar 

  86. Quinlan, R. A. and Franke, W. W. (1983). Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Eur. J. Biochem , 132, 477–484.

    Article  PubMed  CAS  Google Scholar 

  87. Raff, M. C., Fields, K. L., Hakomori, S. I., Mirsky, R., Pruss, R. M. and Winter, J. (1979). Cell type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res , 174, 283–308.

    Article  PubMed  CAS  Google Scholar 

  88. Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R. and Noble, M. (1983). Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci , 3, 1289–1300.

    PubMed  CAS  Google Scholar 

  89. Raju, T. R. and Dahl, D. (1983). Localization of desmin in cultured astrocytes and its distribution in relation to glial fibrillary acidic (GFA) protein. Int. J. Devi. Neurosci , 1, 1–5.

    Article  Google Scholar 

  90. Reiser, G., Loffler, F. and Hamprecht, B. (1983). Tetrodotoxinsensitive ion channels characterized in glial and neuronal cells from rat brain. Brain Res , 261, 335–340.

    Article  PubMed  CAS  Google Scholar 

  91. Richardson, J. S. and Hertz, L. (1983). The effect of antidepressent drugs on adenylyl cyclase linked beta-adrenergic binding sites on mouse astrocytes in primary cultures. Prog. Neurop- sychopharmacol. Biol. Psychiat , 7, 675–680.

    CAS  Google Scholar 

  92. Rickmann, M. and Wolff, J. R. (1985). Prenatal gliogenesis in the neopallium of the rat. Anat. Embryol, and Cell Biol , 93, 1–104.

    CAS  Google Scholar 

  93. Rougon, G., Noble, M. and Mudge, A. W. (1983). Neuropeptides modulate the adrenergic response to purified astrocytes in vitro. Nature, 305, 715–716.

    Article  PubMed  CAS  Google Scholar 

  94. Scharp, G., Osborn, M. and Weber, K. (1982). Occurrence of two different intermediate filament proteins in the same filament in situ within a human glioma cell line. Exp. Cell Res., 141, 385–395.

    Google Scholar 

  95. Schousboe, A. (1978). Glutamate, GABA and taurine in cultured, normal glial cells. In: Dynamic Properties of Glial Cells. E. Schoffeniels, G. Franke, L. Hertz and D. B. Tower, eds., Pergamon Press, Oxford, pp. 173–182.

    Google Scholar 

  96. Schousboe, A. and Divac, I. (1979). Differences in glutamate uptake in astrocytes cultured from different brain regions. Brain Res , 177, 407–409.

    Article  PubMed  CAS  Google Scholar 

  97. Schousboe, A., Drejer, J. and Divac, I. (1980). Regional heterogeneity in astroglial cells. Trends in Neurosci. XIII–XIV.

    Google Scholar 

  98. Schousboe, A., Nissen, C., Bock, E., Sapirstein, V. W., Juurlink, B. H. J. and Hertz, L. (1985). Biochemical development of rodent astrocytes in primary cultures. In: Tissue Culture in Neurobiology. E. Giacobini, A. Vernadakis and A. Shahar, eds., Raven Press, New York, pp. 397–409.

    Google Scholar 

  99. Suarez Najera, I., Fernandez Ruiz and Garcia Segura, L. M. (1980). Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster. J. Anat , 130, 55–61.

    Google Scholar 

  100. Tardy, M., Costa, M. F., Fages, C., Bardakdjian, J. and Gonnard, P. (1982). Uptake and binding of serotonin by primary cultures of mouse astrocytes. Dev. Neurosci , 5, 19–26.

    Article  PubMed  CAS  Google Scholar 

  101. Trimmer, P. A., Reier, P. J., Oh, T. H. and Eng, L. F. (1982). An ultrastructural and immunocytochemical study of astrocytic differentiation in vitro. J. Neuroimmunology, 2, 235–260.

    Article  CAS  Google Scholar 

  102. Turksen, K., Opas, M., Aubin, J. E. and Kalnins, V. I. (1983). Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigment epithelial (RPE) cells in vivo. Exp. Cell Res , 147, 379–391.

    Article  PubMed  CAS  Google Scholar 

  103. van Calker, D., Müller, M. and Hamprecht, B. (1978). Adrenergic alpha- and beta-receptors expressed by the same cell type in primary culture of perinatal mouse brain. J. Neurochem , 30, 713–718.

    Article  PubMed  Google Scholar 

  104. van Calker, D., Müller, M. and Hamprecht, B. (1979). Receptors regulating the level of cyclic AMP in primary cultures of perinatal mouse brain. In: Natural Growth and Differentiation. E. Meisami and M. A. B. Brazier, eds., Raven Press, New York, pp. 11–25.

    Google Scholar 

  105. van Calker, D., Müller, M. and Hamprecht, B. (1980). Regulation of secretin, vasoactive intestinal peptide, and somatostatin of cyclic AMP accumulation in cultured brain cells. Proc. Natl. Acad. Sci., USA, 77, 6907–6911.

    Article  PubMed  Google Scholar 

  106. van Calker, D. Löffler, F. and Hamprecht, B. (1983). Corticotropin peptides and melanotropins elevate the level of adenosine 3’,5’-cyclic monophosphate in cultured murine brain cells. J. Neurochem , 40, 418–427.

    Article  PubMed  Google Scholar 

  107. Wang, E., Carincross, J. G. and Liem, R. K. H. (1984). Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells. Proc. Natl. Acad. Sci., USA, 81, 2102–2106.

    Article  PubMed  CAS  Google Scholar 

  108. Warner, A. E. (1985). Factors controlling the early development of the nervous system. In: Molecular Basis of Neural Development. G. M. Edelman, W. E. Gall and W. M. Cowan, eds., John Wiley amp; Sons, New York, pp. 11–34.

    Google Scholar 

  109. Willingham, M. and Pastan, I. (1975). Cyclic AMP and cell morphology in cultured fibroblasts. J. Cell Biol , 67, 146–159.

    Article  PubMed  CAS  Google Scholar 

  110. Wolff, J. R., Rickmann, M. and Chronwall, B. M. (1979). Axo-glial synapses and GABA-accumulating glial cells in the embryonic neocortex of the rat. Cell and Tissue Res , 201, 239–248.

    Article  CAS  Google Scholar 

  111. Wujek, J. R. and Dreier, P. J. (1984). Astrocytic membrane morphology: Differences between mammalian and amphibian astrocytes after axotomy. J. Comp. Neurol , 222, 607–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedoroff, S. (1987). From Neuroepithelium to Mature Astrocytes. In: Althaus, H.H., Seifert, W. (eds) Glial-Neuronal Communication in Development and Regeneration. NATO ASI Series, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71381-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71381-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71383-5

  • Online ISBN: 978-3-642-71381-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics