Dopaminerge Supersensitivität als Sekundärphänomen schizophrener Prozeßpsychosen. Zur pathophysiologischen Endstrecke schizophrener Syndrome

  • K. Klempel
  • E. W. Fünfgeld
Conference paper

Zusammenfassung

Die „Dopaminhypothese“ schizophrener Erkrankungen postuliert in dysfunktioneller Wertung eine autonome Entsteuerung der zentralen dopamin-(DA-)ergen Transmission. — Der Nachweis regel- oder gesetzmäßiger DA-erger Supersensitivität und ihr beurteilbarer Stellenwert in einem allgemeinen pathophysiologischen Prinzip psychotischer Erkrankungen stehen aus (Oades 1982; Stevens 1973).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alonso R, Agharanya JC, Wurtman RJ (1980) Tyrosine loading enhances catecholamine excretion by rats. J Neural Transm 49:31PubMedCrossRefGoogle Scholar
  2. Ambrozi L, Riederer P, Birkmayer W, Neumayer E (1974) Zur Statistik des Tyrosin-Tryptophan-Diagramms bei der Depression. Dtsch Med Wochenschr 99:1087PubMedGoogle Scholar
  3. Andén NE (1969) Adrenergic mechanisms. Ann Rev Pharmacol 9:119PubMedCrossRefGoogle Scholar
  4. Bannet J, Belmaker RH, Ebstein RP (1981) Individual differences in the response of dopamine receptor number to chronic haloperidol treatment. Biol Psychiatry 16:1059PubMedGoogle Scholar
  5. Bartholini G, Stadler H, Gadea-Ciria M, Lloyd KG (1977) Interaction of dopaminergic and cholinergic neurons in the extrapyramidal and limbic systems. In: Costa E, Gessa GL (eds) Advances in biochemical psychopharmacology. Raven, New YorkGoogle Scholar
  6. Benkert O, Renz A, Marano C, Matussek N (1971) Altered tyrosine daytime plasma levels in endogenous depressive patients. Arch Gen Psychiatry 25:359PubMedGoogle Scholar
  7. Birkmayer W, Linauer W (1970) Störung des Tyrosin- und Tryptophanmetabolismus bei Depression. Arch Psychiatr Nervenkr 213:377PubMedCrossRefGoogle Scholar
  8. Bunney BS, Aghajanian GK (1975) Evidence for drug actions on both pre- and postsynaptic catecholamine receptors in the CNS. In: Usdin E, Bunney WE (eds) Pre- and post-synaptic receptors. Dekker, New YorkGoogle Scholar
  9. Burt DR, Creese I, Snyder SH (1976) Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain. Science 196:326CrossRefGoogle Scholar
  10. Cannon WB, Rosenblueth A (1949) The supersensitivity of denervated structures. Macmillan, New YorkGoogle Scholar
  11. Davis JM (1974) A two factor theory of schizophrenia. J Psychiatr Res 11:25PubMedCrossRefGoogle Scholar
  12. Gey KF, Pletscher A (1961) Influence of chlorpromazine and chlorprothixine on the cerebral metabolism of 5-hydroxy-tryptamine, norepinephrine, and dopamine. J Pharmacol Exp Ther 133:18PubMedGoogle Scholar
  13. Gibson CJ, Wurtman RJ (1977) Physiological control of brain catechol synthesis by brain tyrosine concentration. Biochem Pharmacol 26:1137PubMedCrossRefGoogle Scholar
  14. Gibson CJ, Wurtman RJ (1978) Physiological control of brain catecholamine synthesis by brain tyrosine concentration. Life Sci 22:1399PubMedCrossRefGoogle Scholar
  15. Glick SD (1975) Recovery of function and changes in sensitivity to amphetamine following caudate lesions in rats. Behav Biol 13:239PubMedCrossRefGoogle Scholar
  16. Glick SD, Greenstein S, Zimmerberg B (1972) Facilitation of recovery by alpha-methyl-p-tyrosine after lateral hypothalamic damage. Science 177:534PubMedCrossRefGoogle Scholar
  17. Haase H-J (1982) Therapie mit Psychopharmaka und anderen seelisches Beflnden beein-flussenden Medikamenten. Schattauer, StuttgartGoogle Scholar
  18. Hess HJ (1985) Untersuchung einer diurnalen Rhythmik des Plasma-Tyrosins mittels valider Methodik bei gesunden Probanden verschiedener Altersstufen und Patienten mit Psychosen aus dem schizophrenen Formenkreis. Med. Dissertation Universität des SaarlandesGoogle Scholar
  19. Huber G (1957) Pneumencephalographische und psychopathologische Bilder bei endogenen Psychosen. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  20. Huber G (1961) Klinische und neuroradiologische Untersuchungen an chronisch Schizophrenen. Nervenarzt 32:7PubMedGoogle Scholar
  21. Kishimoto H (1977) The level and circadian rhythm of plasma tryptophan, tyrosine and cortisol in manic-depressive patients and its clinical significances. Seishin Shinkeigaku Zasshi 79:375 (Psychiatria et neurologica Japonica; Übersetzung aus dem Japani-schen)PubMedGoogle Scholar
  22. Klempel K (1972) Orientierende Untersuchungen des zirkadianen Plasma-Tyrosin-Rhythmus depressiver Syndrome unterschiedlicher Ätiologie. Arch Psychiatr Nervenkr 216:131PubMedCrossRefGoogle Scholar
  23. Klempel K, Bleeker HE, Fünfgeld EW (1982) Labile Regelmechanismen der Plasma-Tyrosin-Konzentration in gesunden und psychotischen Probanden. In: Beckmann H (Hrsg) Biologische Psychiatrie. Thieme, StuttgartGoogle Scholar
  24. Klempel K, Fünfgeld EW, Roux JT (1984 a) Parameters of plasma tyrosine regulation as biological marker in chronic schizophrenia. In: Meyer BJ, Kramer S (eds) Neuronal communications. Balkema, RotterdamGoogle Scholar
  25. Klempel K, Hess J, Laufhütte T (1984 b) Argumente für eine Regulation und Feedback-kontrolle des Plasmatyrosins als Katecholaminprecursors in chronisch Schizophrenen und in gesunden Probanden. In: Hopf A, Beckmann H (Hrsg) Forschungen zur Biologischen Psychiatrie. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  26. Künkel H, Selbach H (1958) Die „Induktive Tonussteigerung“ als ein Grundphänomen vegetativer Regelabläufe. Wien Nervenheilkd 15:170Google Scholar
  27. Laufhütte T (1985) Zur Regelphysiologie der peripheren Tyrosinkonzentration als Präkursor der dopaminergen Katecholamine bei Gesunden und chronisch Schizophrenen. Med Dissertation, Universität des SaarlandesGoogle Scholar
  28. Niskanen P, Huttunen M, Tamminen T, Jääskelainen J (1976) The daily rhythm of plasma tryptophan and tyrosine in depression. Br J Psychiatry 128:67PubMedCrossRefGoogle Scholar
  29. Oades RD (1982) Attention and schizophrenia. Pitman, BostonGoogle Scholar
  30. Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799Google Scholar
  31. Quastel DMJ, Pennefather P (1983) Receptor blockade and synaptic function. J Neural Transm [Suppl] 18:61Google Scholar
  32. Reynolds GP, Reynolds LM, Riederer P, Jellinger K, Gabriel E (1980) Dopamine receptors and schizophrenia: Drug effect or illness? Lancet II:1251CrossRefGoogle Scholar
  33. Riederer P, Birkmayer W, Neumayer E (1973) The tyrosine/tryptophan-diagram in a longtime study with depressed patients. J Neural Transm 34:31PubMedCrossRefGoogle Scholar
  34. Rooyen JM van, Offermeier J (1981) Peripheral dopaminergic receptors. Physiological and pharmaceutical aspects of therapeutic importance. S Afr Med J 59:329PubMedGoogle Scholar
  35. Scally MC, Ulus I, Wurtman RJ (1977) Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J Neural Transm 41:1PubMedCrossRefGoogle Scholar
  36. Scatton B (1977) Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. Eur J Pharmacol 46:363PubMedCrossRefGoogle Scholar
  37. Sedvall GC, Kopin IJ (1967) Influence of sympathetic denervation and nerve impulse activity on tyrosine hydroxylase in the rat submaxillary gland. Biochem Pharmacol 16:39CrossRefGoogle Scholar
  38. Selbach H (1949) Das Kippschwingungsprinzip in der Analyse der vegetativen Selbststeuerung, Teil 1 u. 2. Fortschr Neurol Psychiatr 17:129, 151Google Scholar
  39. Selbach H (1969) Die endogene Depression als Regulationskrankheit. In: Hippius H, Selbach H (Hrsg) Das depressive Syndrom. Urban & Schwarzenberg, MünchenGoogle Scholar
  40. Sharpless SK (1964) Reorganization of function in the nervous system — use and disuse. Ann Rev Physiol 26:357CrossRefGoogle Scholar
  41. Sharpless SK (1969) Isolated and deafferented neurons: Disuse supersensitivity. In: Jasper HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little, Brown, BostonGoogle Scholar
  42. Sharpless SK (1975) Supersensitivity-like phenomena in the central nervous system. Fed Proc 34:1990PubMedGoogle Scholar
  43. Spitzer RL, Endicott J, Robins E, Kuriansky J, Gurland B (1975) Preliminary report of the reliability of research diagnostic criteria applied to psychiatric case reports. In: Sudilovsky A, Gershon S, Beer B (eds) Predictability in psychopharmacology. Raven, New YorkGoogle Scholar
  44. Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29:177PubMedGoogle Scholar
  45. Stevens JR (1981) Neurology and neuropathology of schizophrenia. In: Henn F, Nasrallah H (eds) Schizophrenia as a brain disease. Oxford University Press, New YorkGoogle Scholar
  46. Sved AF, Fernstrom JD, Wurtman RJ (1979) Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc Natl Acad Sci USA 76:3511Google Scholar
  47. Takahashi R, Utena H, Machiyama Y, Kurihara M, Otsuka T, Nakamura T, Kanamura H (1968) Tyrosine metabolism in manic depressive illness. Life Sci 7:1219PubMedCrossRefGoogle Scholar
  48. Trendelenburg U (1963) Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol Rev 15:225PubMedGoogle Scholar
  49. Waalkes TP, Udenfried S (1957) A fluorometric method for the estimation of tyrosine in plasma and tissues. J Lab Clin Med 50:733PubMedGoogle Scholar
  50. Wilder J (1967) Stimulus and response. Wright, BristolGoogle Scholar
  51. Wurtman RJ (1979) Precursor control of transmitter synthesis. In: Barbeau A, Growdon JH, Wurtman RJ (eds) Nutrition and the brain, vol 5. Cholin and Lecithin in brain disorders. Raven, New YorkGoogle Scholar
  52. Wurtman RJ (1982) Nutrients that modify brain function. Sci Am 4:42Google Scholar
  53. Wurtman RJ, Fernstrom JD (1974) Nutrition and the brain. In: Schmitt FO, Worden FG (eds) The neurosciences. MIT Press, CambridgeGoogle Scholar
  54. Wurtman RJ, Chou C, Rose CM (1967) Daily rhythm in tyrosine concentration in human plasma: Persistence on low-protein diets. Science 158:660PubMedCrossRefGoogle Scholar
  55. Wurtman RJ, Rose CM, Chou C, Larin FF (1968) Daily rhythms in the concentrations of various amino acids in human plasma. N Engl J Med 279:171PubMedCrossRefGoogle Scholar
  56. Wurtman RJ, Larin FF, Mostafapour S, Fernstrom JD (1974) Brain catechol synthesis: Control by tyrosine concentration. Science 185:183PubMedCrossRefGoogle Scholar
  57. Zigmond MJ, Wurtman RJ (1970) Daily rhythm in the accumulation of brain catechol-amines synthesized from circulating H3-tyrosine. J Pharmacol Exp Ther 172:416PubMedGoogle Scholar
  58. Zivkovic B, Guidotti A, Revuelta A, Costa E (1975) Effects of thioridazine, clozapine, and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J Pharmacol Exp Ther 194:36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • K. Klempel
  • E. W. Fünfgeld

There are no affiliations available

Personalised recommendations