Skip to main content

Proteoglycans and the Intercellular Tumor Matrix

  • Chapter

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 77))

Abstract

The intercellular matrix is a highly organized, dynamic system that dictates the overall shape and structure of organs. The spatial and chemical signals which are present in the extracellular matrix modulate the phenotypic expression of epithelial and mesenchymal cells. In turn, these cells regulate the chemistry and structural organization of the extracellular matrix. This active interplay between cells and their products leads to the formation of a highly complex environment in which normal and neoplastic cells can thrive and proliferate. Proteoglycans are suitable candidates for mediating this constant exchange of information. For instance, they influence the diffusion of molecules across tissues, the migration of cells along defined pathways, the surface properties of cells, and the structure of biological filters. These effects are primarily mediated by the polyanionic nature of the proteoglycan, by their expanded configuration in tissues and body fluids, and by their ability to interact with a variety of important matrix macromolecules. They are indeed constituents of both the stromal matrix and the cell surface (Fig. 1), and their biosynthesis, secretion and metabolism are highly regulated by intrinsic and extrinsic signals. These molecules are composed of a protein backbone to which a number of glycosaminoglycan chains and oligosaccharides are covalently attached, much like the branches to a tree. The proteoglycan-rich intercellular matrix can thus be conceived as a microcosmic forest, the properties of which depend primarily on the number, size and structure of the various glycosaminoglycan chains and their complex intermolecular affiliations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bano M, Zwiebel JA, Salomon DS, Kidwell WR (1983) Detection and partial characterization of collagen synthesis stimulating activities in rat mammary adenocarcinomas. J Biol Chem 258: 2729–2735

    PubMed  CAS  Google Scholar 

  • Barsky SH, Rao CN, Grotendorst GR, Liotta LA (1982) Increased content of type V collagen in desmoplasia of human breast carcinoma. Am J Pathol 108: 276–283

    PubMed  CAS  Google Scholar 

  • Barsky SH, Siegal GP, Jannotta F, Liotta LA (1983a) Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest 49: 140–147

    CAS  Google Scholar 

  • Barky SH, Togo S, Garbs S, Liotta LA (1983b) Type IV collagenase immunoreactivity in invasive breast carcinoma. Lancet 1: 296–297

    Google Scholar 

  • Castor CW, Naylor B (1977) Acid mucopolysaccharide composition of serous effusions. Study of 100 patients with neoplastic and non-neoplastic conditions. Cancer 20: 462–466

    Article  Google Scholar 

  • Chiu B, Chug A, Tengblad A, Pearce R, McCaughey WTE (1984) Analysis of hyaluronic acid in the diagnosis of malignant mesothelioma. Cancer 54: 2195–2199

    Article  PubMed  CAS  Google Scholar 

  • David G, Van Den Berghe H (1983) Transformed mouse mammary epithelial cells synthesize under-sulfated basement membrane proteoglycan. J Biol Chem 258: 7338–7344

    PubMed  CAS  Google Scholar 

  • Gallager JT, Hampson IN (1984) Proteoglycans in cellular differentiation and neoplasia. Biochem Soc Trans 12: 541–543

    Google Scholar 

  • Graf M, Baici A, Sträuli P (1981) Histochemical localization of cathepsin B at the invasion front of the rabbit V2 carcinoma. Lab Invest 45: 587–596

    PubMed  CAS  Google Scholar 

  • Hascall VC, Hascall GK (1981) Proteoglycans. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, p 39

    Chapter  Google Scholar 

  • Heinegård DK, Paulsson M (1984) Structure and metabolism of proteoglycans. In: Piez DA, Reddi AH (eds) Extracellular biochemistry. Elsevier Publishing, New York, p 277

    Google Scholar 

  • Hopwood JJ, Dorfman A (1978) Glycosaminoglycan synthesis by Wilms’ tumor. Pediat Res 12: 52–56

    PubMed  CAS  Google Scholar 

  • Hurst RE, Parmley RT, Nakamura N, West SS, Denys FR (1981) Heparan sulfate of AH-130 ascites hepatoma cells: a cell-surface glycosaminoglycan not displaced by heparin. J Histochem Cytochem 29: 731–737

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1984 a) Proteoglycans and neoplastic-mesenchymal cell interactions. Hum Pathol 15: 2–10

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1984 b) Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J Cell Biol 99: 403–117

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV (1985a) Proteoglycans: structure, function, and role in neoplasia. Lab Invest 53: 373–396

    PubMed  CAS  Google Scholar 

  • Iozzo RV (1985b) Neoplastic modulation of extracellular matrix. Colon carcinoma cells release polypeptides that alter proteoglycan metabolism in colon fibroblasts. J Biol Chem 260: 7464–7473

    PubMed  CAS  Google Scholar 

  • Iozzo RV, Muller-Glauser W (1985) Neoplastic modulation of extracellular matrix: proteoglycan changes in the rabbit mesentery induced by V2 carcinoma cells. Cancer Res 45: 5677–5687

    PubMed  CAS  Google Scholar 

  • Iozzo RV, Wight TN (1982) Isolation and characterization of proteoglycans synthesized by human colon and colon carcinoma. J Biol Chem 257: 11135–11144

    PubMed  CAS  Google Scholar 

  • Iozzo RV, Goldes JA, Chen W-J, Wight TN (1981) Glycosaminoglycans of pleural mesothelioma: a possible biochemical variant containing chondroitin sulfate. Cancer 48: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Iozzo RV, Bolender RP, Wight TN (1982) Proteoglycan changes in the intercellular matrix of human colon carcinoma. An integrated biochemical and stereologic analysis. Lab Invest 47: 124–138

    Google Scholar 

  • Iozzo RV, Ketterer CL, Slaymaker DJ (1986) Evidence of a small hydrophobic domain in the core protein of heparan sulfate proteoglycan from human colon carcinoma cells. FEBS Lett 206: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Isemura M, Munakata H, Ototani N, Goto K, Yosizawa Z (1982) Glycosaminoglycans of rat colorectal adenocarcinoma. Gann 73: 721–727

    PubMed  CAS  Google Scholar 

  • Kawai T, Suzuki M, Shinmei M, Maenaka Y, Kageyama K (1985) Glycosaminoglycans in malignant diffuse mesothelioma. Cancer 56: 567–574

    Article  PubMed  CAS  Google Scholar 

  • Kefalides NA, Alper R, Clark CC (1979) Biochemistry and metabolism of basement membranes. Int Rev Cytol 61: 167–228

    Article  PubMed  CAS  Google Scholar 

  • Keller KL, Keller JM, Moy JN (1980) Heparan sulfates from Swiss mouse 3T3 and SV3T3 Cells: 0-sulfate difference. Biochemistry 19: 2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Khoory MS, Nesheim ME, Bowie EJW, Mann KG (1980) Circulating heparan sulfate proteoglycan anticoagulant from a patient with a plasma cell disorder. J Clin Invest 65: 666–674

    Article  PubMed  CAS  Google Scholar 

  • Knudson W, Biswas C, Toole BP (1984) Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci USA 81: 6767–6771

    Article  PubMed  CAS  Google Scholar 

  • Kramer RH, Vogel KG (1984) Selective degradation of basement membrane macromolecules by metastatic melanoma cells. J Natl Cancer Inst 72: 889–897

    PubMed  CAS  Google Scholar 

  • Kramer RH, Vogel KG, Nicolson GL (1982) Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257: 2678–2686

    PubMed  CAS  Google Scholar 

  • Lewko WM, Liotta LA, Wicha MS, Vonderhaar BK, Kidwell WR (1981) Sensitivity of N-nitroso- methylurea-induced rat mammary tumors to cis-hydroxyproline, an inhibitor of collagen production. Cancer Res 41: 2855–2862

    PubMed  CAS  Google Scholar 

  • Lindahl U, Feingold DS, Rodén L (1986) Biosynthesis of heparin. Trends Biochem Sci 11: 221–225

    Article  CAS  Google Scholar 

  • Liotta LA, Abe S, Gehron-Robey P, Martin GR (1979) Preferential digestion of basement membrane collagen by an enzyme derived from metastatic murine tumor. Proc Natl Acad Sci USA 76: 2268–2272

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagens. Nature 284: 67–68

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Thorgeirsson UP, Garbisa S (1982) Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1: 277–288

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Rao CN, Barsky SH (1983) Tumor invasion and the extracellular matrix. Lab Invest 49: 636–649

    PubMed  CAS  Google Scholar 

  • Merrilees MJ, Finlay GJ (1985) Human tumor cells in culture stimulate glycosaminoglycan synthesis by human skin fibroblasts. Lab Invest 53: 30–36

    PubMed  CAS  Google Scholar 

  • Meyer K, Chaffee E (1939) Hyaluronic acid in pleural fluid associated with malignant tumor involving pleura and peritoneum. Proc Soc Exp Biol Med 42: 797–800

    CAS  Google Scholar 

  • Morse BS, Nussbaum M (1967) The detection of hyaluronic acid in the serum and urine of a patient with nephroblastoma. Am J Med 42: 996–1002

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Irimura T, Di Ferrante DT, Di Ferrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220: 611–613

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259: 2283–2290

    PubMed  CAS  Google Scholar 

  • Nakamura N, Kojima J (1981) Changes in charge density of heparan sulfate isolated from cancerous human liver tissue. Cancer Res 41: 278–283

    PubMed  CAS  Google Scholar 

  • Nakamura N, Hurst RE, West SS (1978) Biochemical composition and heterogeneity of heparan sulfates isolated from AH-130 ascites hepatoma cells and fluid. Biochim Biophys Acta 538: 445–457

    PubMed  CAS  Google Scholar 

  • Nakano T, Fuji J, Tamura S, Amuro Y, Nabeshima K, Horai T, Hada T, Higashino K (1986) Glycosaminoglycans in malignant pleural mesothelioma. Cancer 57: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC (1986) Mechanisms of tumor progression. Cancer Res 46: 2203–2207

    PubMed  CAS  Google Scholar 

  • Pal S, Strider W, Margolis R, Gallo G, Lee-Huang S, Rosenberg L (1978) Isolation and characterization of proteoglycans from human chondrosarcoma. J Biol Chem 253: 1279–1289

    PubMed  CAS  Google Scholar 

  • Palmer RN, Rick ME, Rick PD, Zeller J A, Gralnick HR (1984) Circulating heparan sulfate anticoagulant in a patient with a fatal bleeding disorder. N Engl J Med 310: 1696–1699

    Article  PubMed  CAS  Google Scholar 

  • Poole AR, Tiltman KJ, Recklies AD, Stoker TAM (1978) Differences in secretion of the proteinase cathepsin B at the edges of human breast carcinomas and fibroadenomas. Nature 273: 545–547

    Article  PubMed  CAS  Google Scholar 

  • Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283: 139–146

    Article  PubMed  CAS  Google Scholar 

  • Powars DR, Allerton SE, Beierle J, Butler BB (1972) Wilms’ tumor. Clinical correlation with circulating mucin in three cases. Cancer 29: 1597–1605

    Google Scholar 

  • Robinson J, Viti M, Hook M (1984) Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol 98: 946–953

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg L, Tang L-H, Pal S (1979) Biochemical assessment of malignancy in human chondrosarcoma. In: Gregory JD, Jeanloz RW Glycoconjugate research, vol I. Academic Press, New York, p 393

    Google Scholar 

  • Russel JB, Steinherz PG, Miller Dr, Hilgartner MW (1984) A heparin-like anticoaglant in an 8-month-old boy with acute monoblastic leukemia. Am J Hematol 16: 83–90

    Article  Google Scholar 

  • Schürch W, Seemayer TA, Lagace R (1981) Stromal myofibroblasts in primary invasive and metastatic carcinomas. Virchows Arch (Pathol Anat) 391: 125–139

    Article  Google Scholar 

  • Seemayer TA, Schiirch W, Lagace R, Tremblay G (1979) Myofibroblasts in the stroma of invasive and meteastatic carcinoma. Am J Surg Pathol 3: 525–533

    Article  PubMed  CAS  Google Scholar 

  • Sloane BF, Dunn JR, Honn KV (1981) Lysosomal cathepsin B: correlation with metastatic potential. Science 212: 1151–1153

    Article  PubMed  CAS  Google Scholar 

  • Sugahara K, Schwartz NB, Dorfman A (1980) Defect in 3′-phosphoadenosine-5′-phosphosulfate formation in brachymorphic mice. Proc Natl Acad Sci USA 76: 6615–6619

    Article  Google Scholar 

  • Tarin D, Hoyt BJ, Evans DJ (1982) Correlation of collagenase secretion with metastatic-colonization potential in naturally occurring murine mammary tumors. Br J Cancer 46: 266–278

    Article  PubMed  CAS  Google Scholar 

  • Thompson ME, Bromberg PA, Amenta JS (1969) Acid mucopolysaccharide determination: a useful adjunct for the diagnosis of malignant mesothelioma with effusions. Am J Clin Pathol 52: 335–339

    PubMed  CAS  Google Scholar 

  • Thonar EJ-MA, Sweet MBE, Immelman AR, Lyons G (1979) Structural study on proteoglycan from human chondrosarcoma. Arch Biochem Biophys 199: 179–189

    Article  Google Scholar 

  • Toole BP (1981) Glycosaminoglycans in morphogenesis. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, p 259

    Chapter  Google Scholar 

  • Turpeeniemi-Hujanen T, Thorgeirsson UP, Hart IR, Grant SS, Liotta LA (1985) Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cell hybrids that differ in metastatic potential. J Natl Cancer Inst 75: 99–103

    Google Scholar 

  • Underhill CB, Keller JM (1975) A transformation-dependent difference in the heparan sulfate associated with the cell surface. Biochem Biophys Res Commun 63: 448–454

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 43: 2704–2711

    PubMed  CAS  Google Scholar 

  • Waxier B, Eisenstein R, Battifora H (1979) Electrophoresis of tissue glycosaminoglycans as an aid in the diagnosis of mesotheliomas. Cancer 44: 221–227

    Article  Google Scholar 

  • Wewer UM, Albrechtsen R, Rao CN, Liotta LA (1986) The extracellular matrix in malignancy. In: Kuhn K (ed) Rheumatology, vol 10. Karger, Basel, p 451

    Google Scholar 

  • Winterbourne DJ, Mora PT (1981) Cells selected for high tumorigenicity or transformed by simian virus 40 synthesize heparan sulfate with reduced degree of sulfation. J Biol Chem 256: 4310–4320

    PubMed  CAS  Google Scholar 

  • Woolley DE (1984) Collagenolytic mechanisms in tumor cell invasion. Cancer Metastasis Rev 3: 361–372

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iozzo, R.V. (1987). Proteoglycans and the Intercellular Tumor Matrix. In: Seifer, G. (eds) Morphological Tumor Markers. Current Topics in Pathology, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71356-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71356-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71358-3

  • Online ISBN: 978-3-642-71356-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics