Deficiency of Peroxisomal Alanine: Glyoxylate Aminotransferase in Primary Hyperoxaluria Type 1

  • C. J. Danpure
  • P. R. Jennings
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The activity of alanine:glyoxylate aminotransferase (AGT) in the livers of two patients with primary hyperoxaluria type 1 (PH) was substantially lower than that found in six control human livers. Detailed subcellular fractionation of a pyridoxine-resistant PH liver, compared with a control liver, showed that there was a complete absence of peroxisomal AGT. The residual AGT activity in the PH liver could not be enhanced in vitro by excess pyridoxal phosphate. Unlike a number of other peroxisomal disorders, PH appears to be due to a specific enzyme deficiency with no evidence of a generalized perturbation of peroxisomal function.


Calcium Oxalate Autosomal Recessive Disease Pyridoxal Phosphate Control Liver Primary Hyperoxaluria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Koch J., Stockstad E.L.R., Williams H.E. & Smith L.H. (1967) Proc. Natl. Acad. Sci. 57, 1123–1129.Google Scholar
  2. [2].
    Danpure C.J., Purkiss P., Jennings P.R. & Watts R.W.E. (1986) Clin. Sci. 70 417–425.PubMedGoogle Scholar
  3. [3].
    Williams H.E. & Smith L.H. (1983) In “The Metabolic Basis of Inherited Disease”, eds. STanbury J.B., Wyngaarden J.B., Fredrickson D.S., McGraw-Hill, N.Y., pp. 204–228.Google Scholar
  4. [4].
    Rowsell E.V., Carnie J.A., Snell K. & Taktak B. (1972) Int. J. Biochem. 3, 247–257.CrossRefGoogle Scholar
  5. [5].
    Nakatani T., Kawasaki Y., Minatogawa Y., Okuno E. & Kido R. (1985) Clin. Biochem. 18, 311–316.PubMedCrossRefGoogle Scholar
  6. [6].
    Noguchi T., Okuno E., Takada T., Minatogawa Y., Okai K. & Kido R. (1978) Biochem. J. 169, 113–122.PubMedGoogle Scholar
  7. [7].
    Sizer I.W. & Jenkins W.T. (1962) Meth. Enzymol. 5, 677–684.CrossRefGoogle Scholar
  8. [8].
    Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O.Z., Wattiaux R., Jacques P. & DeDuve C. (1964) Biochem. J. 92, 179–184.PubMedGoogle Scholar
  9. [9].
    Wanders R.J.A., Schutgens R.B.H. & Tager J.M. (1985) J. Inher. Metab. Dis. 8 (suppl 2), 151–152.PubMedCrossRefGoogle Scholar
  10. [10].
    Thompson J.S. & Richardson K.E. (1966) Arch. Biochem. Biophys. 117, 599–603CrossRefGoogle Scholar
  11. [11].
    Thompson J.S. & Richardson K.E. (1967) J. Biol. Chem. 242, 3614–3619.PubMedGoogle Scholar
  12. [12].
    Hockaday T.D.R., Clayton J.E. & Smith L.H. (1965) Arch. Dis. Child. 40, 485–491.Google Scholar
  13. [13].
    Crawhall J.C. & Watts R.W.E. (1962) Biochem. J. 85, 163–171.PubMedGoogle Scholar
  14. [14].
    Williams H.E., Wilson K.M. & Smith L.H. (1967) J. Lab. Clin. Med. 70, 494–502.Google Scholar
  15. [15].
    Tolbert N.E. (1981) Ann. Rev. Biochem. 50, 133–157.PubMedCrossRefGoogle Scholar
  16. [16].
    Gibbs D.A. & Watts R.W.E. (1973) Clin. SCi. 44, 227–241.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • C. J. Danpure
    • 1
  • P. R. Jennings
    • 1
  1. 1.Division of Inherited Metabolic DiseasesClinical Research CentreMiddlesexUnited Kingdom

Personalised recommendations