Deficiency of Peroxisomal Alanine: Glyoxylate Aminotransferase in Primary Hyperoxaluria Type 1

  • C. J. Danpure
  • P. R. Jennings
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The activity of alanine:glyoxylate aminotransferase (AGT) in the livers of two patients with primary hyperoxaluria type 1 (PH) was substantially lower than that found in six control human livers. Detailed subcellular fractionation of a pyridoxine-resistant PH liver, compared with a control liver, showed that there was a complete absence of peroxisomal AGT. The residual AGT activity in the PH liver could not be enhanced in vitro by excess pyridoxal phosphate. Unlike a number of other peroxisomal disorders, PH appears to be due to a specific enzyme deficiency with no evidence of a generalized perturbation of peroxisomal function.

Keywords

Sucrose Lactate Glycolate Glycine Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Koch J., Stockstad E.L.R., Williams H.E. & Smith L.H. (1967) Proc. Natl. Acad. Sci. 57, 1123–1129.Google Scholar
  2. [2].
    Danpure C.J., Purkiss P., Jennings P.R. & Watts R.W.E. (1986) Clin. Sci. 70 417–425.PubMedGoogle Scholar
  3. [3].
    Williams H.E. & Smith L.H. (1983) In “The Metabolic Basis of Inherited Disease”, eds. STanbury J.B., Wyngaarden J.B., Fredrickson D.S., McGraw-Hill, N.Y., pp. 204–228.Google Scholar
  4. [4].
    Rowsell E.V., Carnie J.A., Snell K. & Taktak B. (1972) Int. J. Biochem. 3, 247–257.CrossRefGoogle Scholar
  5. [5].
    Nakatani T., Kawasaki Y., Minatogawa Y., Okuno E. & Kido R. (1985) Clin. Biochem. 18, 311–316.PubMedCrossRefGoogle Scholar
  6. [6].
    Noguchi T., Okuno E., Takada T., Minatogawa Y., Okai K. & Kido R. (1978) Biochem. J. 169, 113–122.PubMedGoogle Scholar
  7. [7].
    Sizer I.W. & Jenkins W.T. (1962) Meth. Enzymol. 5, 677–684.CrossRefGoogle Scholar
  8. [8].
    Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O.Z., Wattiaux R., Jacques P. & DeDuve C. (1964) Biochem. J. 92, 179–184.PubMedGoogle Scholar
  9. [9].
    Wanders R.J.A., Schutgens R.B.H. & Tager J.M. (1985) J. Inher. Metab. Dis. 8 (suppl 2), 151–152.PubMedCrossRefGoogle Scholar
  10. [10].
    Thompson J.S. & Richardson K.E. (1966) Arch. Biochem. Biophys. 117, 599–603CrossRefGoogle Scholar
  11. [11].
    Thompson J.S. & Richardson K.E. (1967) J. Biol. Chem. 242, 3614–3619.PubMedGoogle Scholar
  12. [12].
    Hockaday T.D.R., Clayton J.E. & Smith L.H. (1965) Arch. Dis. Child. 40, 485–491.Google Scholar
  13. [13].
    Crawhall J.C. & Watts R.W.E. (1962) Biochem. J. 85, 163–171.PubMedGoogle Scholar
  14. [14].
    Williams H.E., Wilson K.M. & Smith L.H. (1967) J. Lab. Clin. Med. 70, 494–502.Google Scholar
  15. [15].
    Tolbert N.E. (1981) Ann. Rev. Biochem. 50, 133–157.PubMedCrossRefGoogle Scholar
  16. [16].
    Gibbs D.A. & Watts R.W.E. (1973) Clin. SCi. 44, 227–241.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • C. J. Danpure
    • 1
  • P. R. Jennings
    • 1
  1. 1.Division of Inherited Metabolic DiseasesClinical Research CentreMiddlesexUnited Kingdom

Personalised recommendations