Genetic Analysis of a Hybrid Zone Between Domesticus and Musculus Mice (Mus musculus Complex): Hemoglobin Polymorphisms

  • R. D. Sage
  • J. B. WhitneyIII
  • A. C. Wilson
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 127)


As a result of work by thousands of scientists, the laboratory mouse is the best known vertebrate animal after man. We have a very great understanding of its genetics and physiology. The wild ancestors of this domesticated mouse are also well studied (see reviews by Berry, 1981, and Sage, 1981). Increasing use of stocks of wild house mice indicates the utility of these animals in genetics and immunology (Huang et al., 1982; Arden and Klein, 1982; Dickinson et al., 1984; Nizětić et al., 1984; Robert et al., 1985; Rogers et al., 1985). Thus the mouse holds promise to become the model vertebrate from which a more profound understanding of the interactions of genetics, natural selection, and evolution will emerge.


Hybrid Zone House Mouse Globin Gene Musculus Mouse Wild Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph S (1984) Robertsonsche Translokationen bei württembergischen Hausmäusen (Mus musculus domesticus) -Ein Beispiel zur Chromosomenevolution. Jh Ges Naturkde Wurtt 139:67–92Google Scholar
  2. Adolph S, Klein J (1983) Genetic variation of wild mouse populations in southern Germany I. Cytogenetic study. Genet Res Camb 41:117–134CrossRefGoogle Scholar
  3. Arden B, Klein J (1982) Biochemical comparison of major histocompatibility complex molecules from different subspecies of Mus musculus: Evidence for trans-specific evolution of alleles. Proc Natl Acad Sci USA 79:2342–2346PubMedCrossRefGoogle Scholar
  4. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Ann Rev Ecol Syst 16:113–148CrossRefGoogle Scholar
  5. Berry RJ (1981) Town mouse, country mouse: adaptation and adaptability in Mus domesticus (M. musculus domesticus). Mamm Rev 11:91–136CrossRefGoogle Scholar
  6. Berry RJ, Peters J (1977) Heterogeneous heterozygosities in Mus musculus populations. Proc R Soc Lond B 197:485–503PubMedCrossRefGoogle Scholar
  7. Berry RJ, Sage RD, Lidicker WZ, Jackson WB (1981) Genetical variation in three Pacific house mouse (Mus musculus) populations. J Zool, Lond 193:391–404CrossRefGoogle Scholar
  8. Bishop CE, Boursot P, Baron B, Bonhomme F, Hatat D (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315:70–72PubMedCrossRefGoogle Scholar
  9. Bonhomme F, Catalan J, Britton-Davidian J, Chapman VM, Moriwaki K, Nevo E, Thaler L (1984) Biochemical diversity and evolution in the genus Mus. Biochem Genet 22:275–303PubMedCrossRefGoogle Scholar
  10. Britton J, Thaler L (1978) Evidence for the presence of two sympatric species of mice (genus Mus L.) in southern France based on biochemical genetics. Biochem Genet 16:213–225PubMedCrossRefGoogle Scholar
  11. Britton-Davidian J, Bonhomme F, Croset H, Capanna E, Thaler L (1980) Variabilité génétique chez les populations de souris (genre Mus L.) à nombre chromosomique réduit. C R Acad Sci, Paris 290:195–198Google Scholar
  12. Dickinson DP, Gross KW, Piccini N, Wilson CM (1984) Evolution and variation of renin genes in mice. Genetics 108:651–667PubMedGoogle Scholar
  13. Edgell MH, Hardies SC, Brown B, Voliva C, Hill A, Phillips S, Comer M, Burton F, Weaver S, Hutchison CA, III (1983) Evolution of the mouse β globin complex locus. In: Nei M, Koehn RK (eds) Evolution of Genes and Proteins. Sinauer Assoc, Sunderland, Mass p 1Google Scholar
  14. Erhart MA, Simons KS, Weaver S (1985) Evolution of the mouse β-Globin genes: A recent gene conversion in the HbbS haplotype. Mol Biol Evol 2:304–320PubMedGoogle Scholar
  15. Ferris, SD, Sage RD, Huang C-M, Nielsen JT, Ritte U, Wilson AC (1983a) Flow of mitochondrial DNA across a species boundary. Proc Natl Acad Sei USA 80:2290–2294CrossRefGoogle Scholar
  16. Ferris SD, Sage RD, Prager EM, Ritte U, Wilson AC (1983b) Mitochondrial DNA evolution in mice. Genetics 105:681–721PubMedGoogle Scholar
  17. Forejt, J (1981) Hybrid sterility gene located in the T/t H-2 supergene on chromosome 17. In: Reisfeld, RA, Ferrone S (eds) Current Trends in Histocompatibility, vol 1. Plenum Press, New York, London, p 103Google Scholar
  18. Forejt J, Iványi P (1975) Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genet Res, Camb 24:189–206CrossRefGoogle Scholar
  19. Huang C-M, Parsons M, Wakeland EK, Moriwaki K, Herzenberg LA (1982) New immunoglobulin IgG allotypes and haplotypes found in wild mice with monoclonal anti-allotope antibodies. J Immunol 128:661–667PubMedGoogle Scholar
  20. Hunt WG, Seiander RK (1973) Biochemical genetics of hybridisation in European house mice. Heredity 31:11–33PubMedCrossRefGoogle Scholar
  21. Kraft R (1985) Merkmale und Verbreitung der Hausmäuse Mus musculus muscu1us L., 1758, und Mus musculus domesticus Rutty, 1772 (Rodentia, Muridae) in Bayern. Säugetk Mitt 32:1–12Google Scholar
  22. Leder A, Swan D, Ruddle F, D’Eustachio P, Leder P (1981) Dispersion of α-like globin genes of the mouse to three different chromosomes. Nature 293:196–200PubMedCrossRefGoogle Scholar
  23. Leder P, Hansen JN, Konkel D, Leder A, Nishioka Y, Talkington C (1980) Mouse globin system: A functional and evolutionary analysis. Science 209:1336–1342PubMedCrossRefGoogle Scholar
  24. Mayr E (1970) Populations, Species, and Evolutions. Belknap Press, CambridgeGoogle Scholar
  25. Minezawa M, Moriwaki K, Kondo K (1979) Geographical distribution of HbbP allele in the Japanese wild mouse, Mus musculus molossinus. Jpn J Genet 54:165–173CrossRefGoogle Scholar
  26. Newton MP, Peters J (1983) Physiological variation of mouse haemoglobins. Proc R Soc Lond B 218:443–453PubMedCrossRefGoogle Scholar
  27. Nizětić D, Pigueroa P, Klein J (1984) Evolutionary relationships between the t and H-2 haplotypes in the house mouse. Immunogenetics 19:311–320PubMedCrossRefGoogle Scholar
  28. Popp RA (1973) Sequence of amino acids in the β chain of single hemoglobins from C57BL, SWR, and NB mice. Biochim Biophys Acta 303:52–60PubMedGoogle Scholar
  29. Popp RA, Bailiff EG (1973) Sequence of amino acids in the major and minor β chains of the diffuse hemoglobin from BALB/c mice. Biochim Biophys Acta 303:61–67PubMedGoogle Scholar
  30. Popp RA, Bailiff EG, Skow LC, Whitney JB III (1982) The primary structure of genetic variants of mouse hemoglobin. Biochem Genet 20:199–208PubMedCrossRefGoogle Scholar
  31. Ritte U, Neufeld E (1982) East Asian hemoglobin type (HbbP) in wild populations of the house mouse in Israel. Biochem Genet 20:475–481PubMedCrossRefGoogle Scholar
  32. Robert B, Barton P, Minty A, Daubas P, Weydert A, Bonhomme P, Catalan J, Chazottes D, Guénet J-L, Buckingham M (1985) Investigation of genetic linkage between myosin and actin genes using an interspecific mouse back-cross. Nature 314:181–183PubMedCrossRefGoogle Scholar
  33. Rogers MJ, Germain RN, Hare J, Long E, Singer DS (1985) Comparison of MHC genes among distantly related members of the genus Mus. J Immunol 134: 630–636PubMedGoogle Scholar
  34. Sage RD (1978) Genetic heterogeneity of Spanish house mice (Mus musculus complex). In: Morse HC, III (ed) Origins of Inbred Mice. Academic Press, New York, p 519Google Scholar
  35. Sage RD (1981) Wild mice. In: Poster HL, Small JD, Pox JG (eds) The Mouse in Biomedical Research, vol 1. Academic Press, New York, p 39Google Scholar
  36. Selander RK, Hunt WG, Yang SY (1969) Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution 23: 379–390CrossRefGoogle Scholar
  37. Thaler L, Bonhomme P, Britton-Davidian J, Hamar M (1981) The house mouse complex of species: Sympatric occurrence of biochemical groups Mus 2 and Mus 4 in Rumania. Z Säugetk 46:169–173Google Scholar
  38. van Zegeren K, van Oortmerssen GA (1981) Frontier disputes between the West- and East-European house mouse in Schleswig-Holstein, West Germany. Z Säugetk 46:363–369Google Scholar
  39. White MJD (1985) Types of hybrid zones. Boll Zool 52:1–20CrossRefGoogle Scholar
  40. Whitney JB III (1978) Simplified typing of mouse hemoglobin (Hbb) phenotypes using cystamine. Biochem Genet 16:667–672PubMedCrossRefGoogle Scholar
  41. Whitney JB III (l986) Immobilized gradient isoelectric focusing: Detection of “silent” biochemical genetic variants. Curr Top Microbiol Immunol, in pressGoogle Scholar
  42. Whitney JB III, Cobb RR, Popp RA, O’Rourke TW (1985) Detection of neutral amino acid substitutions in proteins. Proc Natl Acad Sci USA 82:7646–7650PubMedCrossRefGoogle Scholar
  43. Wilson, AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26: 375–400CrossRefGoogle Scholar
  44. Zimmermann K (1949) Zur Kenntnis der mitteleuropäischen Hausmäuse. Zool Jahrb Abt Syst (Oekol) Geogr Tiere 78:301–322Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • R. D. Sage
  • J. B. WhitneyIII
  • A. C. Wilson

There are no affiliations available

Personalised recommendations