Advertisement

Constitutive Heterochromatin and Evolutionary Divergence of Mus dunni, M. booduga and M. musculus

  • T. Sharma
  • N. Cheong
  • P. Sen
  • S. Sen
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 127)

Abstract

The Indian pygmy field mice are one of the most interesting groups of animals from evolutionary point of view and include two morphologically extremely similar species Mus dunni and Mus booduga which share widely common natural habitats and until recently were considered conspecific. They are closely allied to the aboriginal mice Mus musculus and are distinguished from each other only on the basis of average characters (Ellerman 1961). The predominant diploid chromosome number in all the three species is 40 but while the karyotypes of M. musculus and M. booduga with all acrocentric chromosomes are identical, that of M. dunni is distinct due to invariable presence of large submetacentric X and acrocentric Y sex chromosomes. M. dunni populations from different localities also exhibit polymorphism in the number of biarmed autosomes (Matthey and Petter 1968; Sharma and Garg 1975; Markvong et al. 1975; Manjunatha and Aswathanarayana 1979; Sen and Sharma 1980/ 1983). The close morphometric and cytogenetic alliance of pygmy mice with a species like M. musculus that has been extensively utilized in molecular genetic and immunological investigations make these an attractive choice for detailed phylogenetic considerations.

Keywords

Chromosomal Form Constitutive Heterochromatin Centromeric Heterochromatin Lower Deck Pygmy Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown SDM, Dover GA (1980a) Conservation of segmental variants of satellite DNA of Mus musculus in a related species: Mus spretus. Nature (Lond) 285:47–49CrossRefGoogle Scholar
  2. Brown SDM, Dover GA (1980b) The specific organization of satellite DNA sequences on the X chromosome of Mus musculus: partial independence of chromosome evolution. Nucleic Acids Res 8: 781–792PubMedCrossRefGoogle Scholar
  3. Committee on standardized genetic nomenclature for mice (1972) Standard karyotype of the mouse, Mus musculus Google Scholar
  4. Duffey PA (1972) Chromosome variation in Peromyscus: a new mechanism. Science 176:1333–1334PubMedCrossRefGoogle Scholar
  5. Ellerman JR (1961) Fauna of India, Mammalia, Vol III, Rodentia, 2nd edn. Roonwal ML (ed) Zoological Survey of IndiaGoogle Scholar
  6. Fry K, Salser W (1977) Nucleotide sequences of HS alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084PubMedCrossRefGoogle Scholar
  7. Gall JG, Atherton DD (1974) Satellite DNA sequences in D. virilis. J Mol Biol 85:663–664CrossRefGoogle Scholar
  8. Gamperl R, Ehmann C, Bachmann K (1982) Genome size and heterochromatin variation in rodents. Genetica 58:199–212CrossRefGoogle Scholar
  9. Hatch FT, Bodner AJ, Mazrimas JA, Moore DH (1976) Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (Genus Dipodomys). Chromosoma (Berl) 58:155–168CrossRefGoogle Scholar
  10. Heth G, Nevo E (1981) Origin and evolution of ethological isolation in subterranean mole rats. Evolution 35:259–274CrossRefGoogle Scholar
  11. Hörz W, Zachau HG (1977) Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur J Biochem 73:383–392PubMedCrossRefGoogle Scholar
  12. Manjunatha KR, Aswathanarayana NV (1979) Studies on the chromosomes of the genus Mus: Autosomal polymorphism in the Indian pygmy mouse Mus dunni (Wroughton). Curr Sci 48:657–659Google Scholar
  13. Markvong A, Marshall JT, Pathak S, Hsu TC (1975) Chromosomes and DNA of Mus: The karyotype of M. fulvidiventris and M. dunni. Cytogenet Cell Genet 14:116–125PubMedCrossRefGoogle Scholar
  14. Marshall JT (1977) A synopsis of Asian species of Mus (Rodentia, Muridae). Amer Mus Nat Hist Bull 58:173–220Google Scholar
  15. Matthey R, Petter F (1968) Existence de deux espices distinctes, l’une chromosomiquement polymorphe chez der Mus Indiens de groupe booduga. Etude cytogenetique et taxonomique. Rev Suisse Zool 75:461–498PubMedGoogle Scholar
  16. Misonne X (1969) African and Indo-Australian Muridae, Evolutionary trends. Annls Mus Afr Cent Ser Zool 172:1–219Google Scholar
  17. Pathak S, Hsu TC, Arrighi FE (1973) Chromosomes of Peromyscus (Rodentia, Cricetidae) IV. The role of heterochromatin in karyotypic evolution. Cytogenet Cell Genet 12:315–326PubMedCrossRefGoogle Scholar
  18. Patton JL, Sherwood SW (1982) Genome evolution in pocket gophers (Genus Thomomys) I. Heterochromatin variation and special potential. Chromosoma (Berl) 85:149–162CrossRefGoogle Scholar
  19. Peacock WJ, Appels R, Dunsmuir P, Lohe AR, Gerlach WL (1976) Highly repeated DNA sequences: chromosomal localization and evolutionary conservation in Inter Cell Biol (eds) Brinkley BR, Porter KR. Rockefeller Univ Press 494–506Google Scholar
  20. Peacock WJ, Lohe AR, Gerlach WL, Dunsmuir P, Dennis ES, Appels R (1978) Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol 42:1121–1135PubMedGoogle Scholar
  21. Rigby PWJ, Dieckman M, Rhodes C, Berg P (1977) Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251PubMedCrossRefGoogle Scholar
  22. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  23. Sen S, Sharma T (1980) Quantitative variation of “Mus musculus-like” constitutive heterochromatin and satellite DNA-sequences in the genus Mus. Chromosoma (Berl) 81:393–402CrossRefGoogle Scholar
  24. Sen S, Sharma T (1983) Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus muscuius, Mus booduga and Mus dunni. Evolution 37:628–636CrossRefGoogle Scholar
  25. Sharma T, Raman R (1973) Variation of constitutive heterochromatin in the sex chromosomes of the rodent Bandicota b. bengalensis (Gray). Chromosoma (Berl) 41:75–84Google Scholar
  26. Sharma T, Garg GS (1975) Constitutive heterochromatin and karyotype variation in India pygmy mouse, Mus dunni. Genet Res (Camb) 25:189–191CrossRefGoogle Scholar
  27. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedCrossRefGoogle Scholar
  28. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  29. Sutton WD, McCallum M (1972) Related satellite DNAs in the genus Mus. J Mol Biol 71:633–656PubMedCrossRefGoogle Scholar
  30. Yamamoto M, Miklos GLG (1978) Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the function of satellite DNA. Chromosoma (Berl) 66:71–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1986

Authors and Affiliations

  • T. Sharma
  • N. Cheong
  • P. Sen
  • S. Sen

There are no affiliations available

Personalised recommendations