Skip to main content

Chronic Neuroleptic Effects on Dopamine Neuron Activity: A Model for Predicting Therapeutic Efficacy and Side Effects?

  • Conference paper
Clinical Pharmacology in Psychiatry

Part of the book series: Psychopharmacology Series ((PSYCHOPHARM,volume 3))

Abstract

The treatment for most psychotic patients was largely ineffectual and care primarily custodial until the discovery of the antipsychotic properties of chlorpromazine in 1953. Ten years later Carlsson and Lindqvist (1963) discovered that antipsychotic drugs (neuroleptics) exert a specific action on central catecholamine systems, and hypothesized that they produced their effects by blocking catecholamine receptors in catecholamine-innervated sites. They further posited that the receptor blockade resulted in an increase in catecholamine neuronal activity which was mediated through long-loop feedback pathways from forebrain regions innervated by catecholamine neurons (Carlsson and Lindqvist 1963). This concept was a major impetus behind the last two decades of research on the mode of action of neuroleptics. During this time the dopamine (DA) system has been the primary focus of attention and DA receptor blockers have continued to be the treatment of choice for the major symptoms of psychosis (Klein et al. 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andén NE, Stock G (1973) Effects of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25: 346–348

    Article  PubMed  Google Scholar 

  • Bannon MJ, Reinhard JF Jr, Bunney EB, Roth RH (1982) Unique response to antipsychotic drugs is due to the absence of terminal autoreceptors in mesocortical dopamine neurons. Nature 296: 444–446

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Freeman AS, Chiodo LA, Bunney BS, Roth RH (1986) The electrophysiological and biochemical pharmacology of the mesolimbic and mesocortical dopamine neurons. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 19. Plenum, New York (in press)

    Google Scholar 

  • Bartholin! G, Haefely W, Jalfre M, Keller HH, Pletscher A (1972) Effects of clozapine on central catecholaminergic neurone systems. Br J Pharmacol 46: 736

    PubMed  CAS  Google Scholar 

  • Beckman B, Hippius H, Ruther E (1979) Treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 3: 47–52

    Google Scholar 

  • Björklund A, Lindvall O (1985) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuronanatomy, vol 2, part 1. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Blaha CD, Lane RF (1984) Direct in vivo electrochemical monitoring of dopamine release in response to neuroleptic drug. Eur J Pharmacol 98: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS (1979) The electrophysiological pharmacology of midbrain dopaminergic systems. In: Horn AS, Korf J, Westerink BHC (eds) The neurobiology of dopamine. Academic, New York, pp 417–452

    Google Scholar 

  • Bunney BS, Aghajanian GK ( 1975 a) Antipsychotic drugs and central dopaminergic neurons: a model for predicting therapeutic efficacy and incidence of extrapyramidal side effects. In: Sudilovsky A, Gershon S, Beer B (eds) Predictability in psychopharmacology: preclinical and clinical correlations. Raven, New York, pp 225–245

    Google Scholar 

  • Bunney BS, Aghajanian GK ( 1975 b) The effect of antipsychotic drugs on the firing of dopaminergic neurons: a reappraisal. In: Sedvall G (ed) Antipsychotic drugs, pharmacodynamics and pharmacokinetics. Pergamon, New York, pp 305–318

    Google Scholar 

  • Bunney BS, Aghajanian GK (1976) Dopaminergic influence in the basal ganglia: evidence for striatonigral feedback regulation. In: Yahr MD (ed) The basal ganglia. Raven, New York, pp 249–267

    Google Scholar 

  • Bunney BS, Aghajanian GK (1978) Mesolimbic and mesocortical dopaminergic systems: physiology and pharmacology. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 159–169

    Google Scholar 

  • Bunney BS, DeRiemer S (1982) Effects of Clonidine on dopaminergic neuron activity in the substantia nigra: possible indirect mediation by noradrenergic regulation of the serotonergic raphe system. In: Friedhoff AJ, Chase TN (eds) Gilles de la Tourette Syndrome. Raven, New York, pp 99–104

    Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23: 1715–1728

    Article  PubMed  CAS  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185: 560–571

    PubMed  CAS  Google Scholar 

  • Bunney BS, Chiodo LA, Grace AA, Schenk JO (1985) In vivo effects of acute and chronic antipsychotic drug administration on midbrain dopaminergic neuron activity. In: Seiden LS, Balster RL (eds) Behavioral pharmacology: the current status. Liss, New York, pp 205–220

    Google Scholar 

  • Burki HR, Ruch W, Asper H, Baggiolini M, Stille G (1974) Effect of single and repeated administration of clozapine on the metabolism of dopamine and noradrenaline in the brain of the rat. Eur J Pharmacol 27: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effects of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20: 140–144

    Article  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1982) Effects of chronic neuroleptic treatments on nigral dopamine cell activity. Soc Neurosci 8: 482 (Abstract)

    Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3: 1607–1619

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1984) Effects of dopamine antagonists on midbrain dopamine cell activity. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines. Pergamon, Elmsford, pp 369–391

    Google Scholar 

  • Chiodo LA, Bunney BS (1985) Possible mechanisms by which repeated clozapine administration differentially affects the activity of two subpopulations of midbrain dopamine neurons. J Neurosci 5: 2539–2544

    PubMed  CAS  Google Scholar 

  • Chiodo LA, Bunney BS (1986) Pharmacological alterations of chronic neuroleptic-induced depolarization of midbrain dopamine-containing neurons. J Neurosci (in press)

    Google Scholar 

  • Ciodo LA, Bannon MJ, Grace AA, Roth RH, Bunney BS (1984) Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience 12: 1–16

    Article  Google Scholar 

  • Crane GE (1973) Persistent dyskinesia. Br J Psychiatry 122: 395–405

    Article  PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containmg neurons in the central nervous system: I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl]62(232): 1–55

    Google Scholar 

  • Freeman AS, Bunney BS (1985) Characterization of putative dopaminergic neuronal firing in the ventral tegmental area (A10) of unrestrained rats. Soc Neurosci 11: 1074 (Abstract)

    Google Scholar 

  • Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36: 1983–1994

    Article  PubMed  CAS  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1980) Nigral dopamine neurons: intracellular recording and identification with L-DOPA injection and histofluorescence. Science 210: 654–656

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons: I. Identification and characterization. Neuroscience 10: 301–315

    Google Scholar 

  • Grace AA, Bunney BS (1986) Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol-analysis using in vivo intracellular recording. J Pharm Exp Ther 238: 1092–1100

    CAS  Google Scholar 

  • Imperato A, DiChiara G (1985) Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis. J Neurosci 5: 297–306

    PubMed  CAS  Google Scholar 

  • Klein DE, Davis JM (1969) Diagnosis and drug treatment of psychiatric disorders. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kohler C, Haglund L, Ogren O, Angeby T (1981) Regional blockade by neuroleptic drugs of in vivo 3H-spiperone binding in the rat brain. Relation to blockade of apomorphine induced hyperactivity and stereotypies. J Neural Transm 52: 163–173

    Google Scholar 

  • Klein DF, Gittelman R, Quitkin F, Rifkin A (1980) Diagnosis and drug treatment of psychiatric disorders: adults and children, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kondo Y, Iwatsubo K (1980) Diminished responses of nigral dopaminergic neurons to haloperidol and morphine following lesions of the striatum. Brain Res 181: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Marco E, Mao CC, Cheney DL, Revuelta A, Costa E (1976) The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei. Nature 264: 363–365

    Article  PubMed  CAS  Google Scholar 

  • McMillen BA, Shore PA (1978) Comparative effects of clozapine and alpha adrenoceptor block-ing drugs on regional noradrenaline metabolism in rat brain. Eur J Pharmacol 52: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Meltzer LT, Bunney BS (1981) Nigral dopaminergic neurons: single unit activity in the awake, unrestrained rat. Soc Neurosci 113: 341 (Abstract)

    Google Scholar 

  • Miller JD, Farber J, Gotz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and waking in the rat. Brain Res 273: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Hiley CR (1974) Anti-muscarinic properties of neuroleptics and drug induced parkinsonism. Nature 248: 596–597

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1977) An adaptation of the push-pull cannula method to study the in vivo release of 3H-dopamine synthesized from 3H-tyrosine in the cat caudate nucleus: effect of various physical and pharmacological treatments. J Neurochem 28: 819–828

    Article  PubMed  CAS  Google Scholar 

  • Nowycky MC, Roth RH (1977) Presynaptic dopamine receptors: development of supersensitivity following treatment with fluphenazine decanoate. Naunyn-Schmiedebergs Arch Pharmacol 300: 247–254

    PubMed  CAS  Google Scholar 

  • Pelham RW, Munsat TL (1979) Identification of direct competition for, and direct influences on, striatal muscarinic cholinergic receptors: in vivo (3H)-quinuclidinyl benzilate binding in rats. Brain Res 171: 473–480

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Bruno F, Bugatti A, Parenti M, Apud JA, Santini V, Carenzi A, Groppetti A, Catabeni F (1980) Behavioral and biochemical correlates after haloperidol and clozapine long- term treatment. Adv Biochem Psychopharmacol 24: 45–51

    PubMed  CAS  Google Scholar 

  • Roth RH (1983) Neuroleptics: functional neurochemistry. In: Coyle JT, Enna SJ (eds) Neuroleptics: neurochemical, behavioral and clinical perspectives. Raven, New York, pp 119–156

    Google Scholar 

  • Schenk JO, Bunney BS (1983) The effect of repeated haloperidol treatment on K+ stimulated “release” in the rat striatum measured by in vivo electrochemistry. Soc Neurosci 9: 1006 (Abstract)

    Google Scholar 

  • Snyder SH, Bannerjee SP, Yamamura HI, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia. Science 184: 1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Souto M, Monti JM, Alter H (1979) Effects of clozapine on the activity of central dopaminergic and noradrenergic neurons. Pharmacol Biochem Behav 10: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand [Suppl]367: 1–48

    Google Scholar 

  • Wang RY, White FJ, Voigt MM (1984) Effects of dopamine agonists on midbrain dopamine cell activity. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines. Pergamon, Elmsford, pp 359–367

    Google Scholar 

  • White FJ, Wang RY (1983 a) Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci 32: 983–993

    Google Scholar 

  • White FJ, Wang RY (1983 b) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, A.S., Bunney, B.S. (1987). Chronic Neuroleptic Effects on Dopamine Neuron Activity: A Model for Predicting Therapeutic Efficacy and Side Effects?. In: Dahl, S.G., Gram, L.F., Paul, S.M., Potter, W.Z. (eds) Clinical Pharmacology in Psychiatry. Psychopharmacology Series, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71288-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71288-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71290-6

  • Online ISBN: 978-3-642-71288-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics